
Verifiable Vote-by-mail
Submitted in partial fulfilment of the requirements of the degree of

Master of Science (Computer Science)

Eleanor McMurtry (760505)

75-point Research Project (COMP90069)

School of Computing and Information Systems

University of Melbourne

Supervised by Vanessa Teague

November 16, 2021

1

Contents

1 Introduction 8

1.1 Contributions . 8

1.2 Background . 9

1.3 Organisation . 10

2 Literature review 12

3 Cryptographic tools 15

3.1 Mathematical conventions . 16

3.2 The ElGamal cryptosystem . 16

3.2.1 Security of ElGamal . 17

3.2.2 Choosing an appropriate group 19

3.2.3 Elliptic curve groups . 23

3.2.4 Sharing an ElGamal key between trustees 24

3.2.5 The homomorphic property of ElGamal 25

3.2.6 Re-randomisation of ciphertexts 26

3.3 Pedersen commitments . 26

3.4 Zero-knowledge proofs . 28

3.4.1 Non-interactivity and the Fiat-Shamir transformation 31

3.5 Preimage proofs . 32

3.6 Applications of preimage proofs for discrete logarithms 34

3.7 Wikström’s shuffle proof . 38

3.7.1 Preimage proof of shuffle . 42

4 The protocol 43

4.1 Overview . 43

4.2 Setup . 43

4.3 Casting a ballot . 45

4.4 Tallying ballots . 46

4.5 The algorithms . 49

2

4.6 Verification procedure . 52

4.7 Interpreting the outcome . 53

5 Properties of the protocol 56

5.1 Privacy . 56

5.2 Receipt-freeness . 59

5.3 Verifiability . 63

5.3.1 With a cheating EC . 64

5.3.2 With a cheating client . 68

5.4 Possible extensions to the protocol . 70

6 Implementation 72

6.1 Cryptographic details . 72

6.2 Constructing the physical ballots . 73

6.3 Benchmarks . 73

6.4 Real-world pilot . 76

7 Future work & conclusion 77

7.1 Future work . 77

7.2 Conclusion . 78

8 References 79

3

Abstract

We propose a new protocol for verifiable remote voting with paper assurance. It is in-

tended to augment existing postal voting procedures, allowing a ballot to be constructed

electronically, printed on paper, then returned in the post. The protocol produces verifi-

cation artifacts which a voter can use to check their vote has been correctly constructed,

received, and processed by the Electoral Commission, provided that either the voter’s

device or the postal service and Electoral Commission are honest. The protocol uses

a postal channel but with an electronically-constructed ballot, halving the amount of

communication required compared to traditional postal voting. Our proposal is the first

system to combine plain paper assurance with cryptographic verification while main-

taining resistance against certain kinds of coercion.

4

Declaration

I certify that

• this thesis does not incorporate without acknowledgement any material previ-

ously submitted for a degree or diploma in any university; and that to the best of

my knowledge and belief it does not contain any material previously published or

written by another person where due reference is not made in the text.

• the thesis is 16537 words in length (excluding text in images, tables, bibliogra-

phies, and appendices).

5

Acknowledgements

First and foremost, I would like to acknowledge the custodians of the land I lived and

worked on to produce this thesis, the Wurundjeri people of the Kulin Nation. I pay my

respects to their elders past, present, and emerging.

I must also thank the various researchers who have contributed to the voting protocol

presented herein; in alphabetical order they are Xavier Boyen, Chris Culnane, Kristian

Gjøsteen, Thomas Haines, Ron Rivest, Peter Ryan, and of course my wonderful su-

pervisor Vanessa Teague. My research would not have been possible without standing

upon the shoulders of each and every one of these giants. A special thank you also to

Ben Rubinstein and Justin Zobel, without whose encouragement, support, and advice I

would not be where I am today.

My deepest gratitude goes out to my beloved Ivy, who has kept me grounded

throughout my research.

Finally, I am indebted to all of the staff in the School of Computing and Information

Systems at the University of Melbourne, who have consistently provided me with a

welcoming and comfortable working environment for the last few years.

6

List of Figures

1 Paper 1: The voter only needs to check the plaintext vote at the top.

This example illustrates a preferential vote: Eve first, Alice next and

Bob last. 47

2 Paper 2: The voter only needs to check the plaintext VoterID 47

3 Paper 1: The top two QR codes contain encryptions of a, b and ra, rb

respectively. The QR codes below contain proofs of plaintext knowledge. 74

4 Paper 2: The QR code here contains an encryption of the VoterID on

the paper, as well as a proof of encryption. 74

5 An example of the raw data encoded in the QR codes for Paper 1 (line

breaks inserted for readability). Upon close inspection, it is clear this

could be compressed further. 75

6 Benchmark results for each major step of Tally on varying numbers of

votes. 76

7

Best practices for internet voting are

like best practices for drunk driving.

Ron Rivest

1 Introduction

Remote voting is on the rise worldwide in the form of either online or postal voting.

Online voting often suffers from unreasonable trust assumptions and verifiability issues

that do not arise from postal voting. However, the latter is difficult to administer; current

postal voting systems rely on a send-and-return model that introduces long delays and

opportunities for fraud. We aim to investigate how an electronically-generated ballot

can allow one-way postal voting, and how a cryptographic protocol can produce in-

tegrity and privacy guarantees. We will discuss the necessary cryptographic machinery,

some desirable privacy and verifiability properties of such a protocol, and prove that

our proposal satisfies these properties. Finally, we provide a prototype implementation.

1.1 Contributions

We present a novel remote voting protocol that allows postal voting to be verifiable and

(passively) receipt-free. To our knowledge, we are the first to propose a remote voting

system with paper assurance that allows both verifiability and receipt-freeness. The

protocol is verifiable under the assumption that an adversary controls either

• the voter’s device; or

• the postal service and the electoral commission

It is therefore not universally verifiable. The protocol is passively receipt-free, meaning

that an honest but curious voter who follows the protocol cannot produce evidence as

to how they voted. However, a voter who actively deviates from the protocol can create

such a receipt. Defence against this is a topic for future work.

The key innovation of the protocol involves pairing votes with a message authenti-

cation code (MAC) constructed as a function of the vote and a pair of secret parameters

8

chosen when the vote is generated. The secret parameters define a line, so if the vote

and MAC are known, there are still a large number of possible values for the secrets.

This makes it infeasible for an adversary who does not know the secrets to generate a

different (but still valid) vote-MAC pair, providing strong integrity guarantees.

1.2 Background

Modern democracies accept that a percentage of eligible voters will not be able to cast

a vote in-person on the election day; remote voting systems are used to allow these

voters to cast a vote nonetheless. The traditional way to do this is postal voting: a voter

is sent a ballot via mail ahead of election day, fills the ballot in with their vote, and

returns the ballot by mail to the electoral commission (EC) responsible for counting

votes. However, in recent years online voting systems have emerged, promising a more

convenient and lower-cost method of remote voting [1, 2]. Concurrently, there has been

a trend towards remote voting globally, demonstrating a growing need for reliable and

scalable voting systems [3, 4, 5].

For almost as long as there have been public-key cryptosystems, cryptographers

have proposed methods for using them to conduct remote voting [6]. One obvious ap-

plication of cryptography to voting is to ensure privacy: if a vote is encrypted with

the EC’s public key, only the EC can decrypt it with their secret key to determine how

the vote was cast. A less-obvious application is to achieve verifiability, whereby vot-

ers are provided with some kind of information that can be used to check that their

vote was correctly included in the final count [7], or the stronger property of universal

verifiability, whereby any member of the public can guarantee every vote was counted

honestly and correctly. There is a fundamental tension between this property and that

of receipt-freeness, meaning that a voter should not be able to prove how they voted

after the election; this is important to prevent voters from being coerced or selling their

vote [8]. The question is then: how can a voter be confident their vote was counted

correctly without giving up receipt-freeness?

A common principle in many existing systems is code voting: the voter is provided

with a sheet of codes which must remain secret and may be used after the election

9

to verify a vote. These systems suffer from a major drawback: the integrity of the

system depends on the secrecy of the codes. In principle, this secrecy is impossible

to verify—printing and sending these codes in secret is a major practical obstacle for

such schemes, so the integrity becomes difficult or impossible to verify, defeating the

purpose. We propose a solution to this problem by having the voter rely on a secrecy

assumption, but having the voter generate their own secrets rather than using secrets

sent to them by an authority. The (untrusted) electoral commission cannot access these

secrets without colluding with the voter’s device.

The existing work closest to our setting is Verifiable Postal Voting [9]. We borrow

the essential idea of cryptographically-augmented postal voting, with several key im-

provements: we introduce receipt freeness (for an honest-but-curious voter), we have

a much higher probability of detecting attempted fraud (we fail only with negligible

probability), and perhaps most importantly we do not rely on an existing public key

infrastructure to authenticate voter signatures.

Building on the above ideas, our proposed system addresses the cast-as-intended

issue while achieving a degree of coercion resistance. Our system easily achieves cast-

as-intended verifiability because it produces a plain paper ballot. The main innovation

is in the recorded-as-cast step: by constructing a universal hash of the vote with secret

parameters, the voter creates a message authentication code (MAC) that both is difficult

to forge and does not reveal useful information about their vote. It achieves tallied-as-

cast verifiability first by relying on scrutineers inspecting ballots that arrive, and then

by a series of cryptographic proofs. While our system requires some trust assumptions

and therefore is not end-to-end verifiable, it is verifiable under the loose condition that

either the voter’s client or the EC (including the postal channel) is honest.

1.3 Organisation

We begin with Section 2, reviewing existing verifiable voting protocols and their prop-

erties. Section 3 describes in detail the cryptographic constructions we will use for the

protocol, on which we will rely to prove properties of the protocol. Sections 4-5 de-

scribe the protocol in depth, as well as the assumptions it relies on and the properties

10

it has under those assumptions, giving formal proofs of security and privacy. Section 6

discusses a practical implementation of the protocol, and the decisions made during the

implementation process. The prototype implementation and associated documentation

is publicly available here: https://github.com/eleanor-em/papervote/

Finally, in Section 7 we discuss possible future work and provide some concluding

remarks.

11

https://github.com/eleanor-em/papervote/

2 Literature review

One of the most influential complete systems for online voting is Helios [10], building

on earlier foundational work by Benaloh [11]. It satisfies the strong condition of end-to-

end verifiability, meaning that any observer can check the integrity of the election even

if the servers and authorities running the election are untrustworthy. There are three key

components of end-to-end verifiability [12]:

• cast-as-intended verifiability: a voter should be confident that the vote they cast

was the one they intended to cast, e.g. by inspecting the encryption of their vote

• recorded-as-cast verifiability: a voter should be confident that the vote the elec-

toral commission received was indeed the one that they cast

• tallied-as-cast verifiability: everybody should be confident that every recorded

vote was counted correctly in the final tally

Helios has two crucial limitations: it is not receipt-free (and does not claim to

be), and it has a complex verification system to provide cast-as-intended verifiability.

Specifically, a voter may choose to “audit” their encrypted vote, which generates a

proof that it is an encryption of what the voter expects; if the voter does so, she must

then generate another vote that can be “sealed” and sent for tallying. This is a complex

procedure that is not easily communicated to the general public, and the integrity of the

system suffers if most voters do not carry out the auditing process. In their analysis,

Karayumak et al. find that voters can be tricked into following the procedure incor-

rectly, and may inadvertently submit a blank vote or be led to falsely believe they have

verified their vote [13]. Furthermore, it may be more difficult to convince the public to

trust a more complicated system; this is critical in many countries including Australia

where trust in government technical systems is low [14, 15].

Another online voting system proposed at around the same time is that of Juels,

Catalano, and Jakobsson (JCJ) [16], with the well-known implementation Civitas [17].

It specifically aimed to address the receipt-freeness question, providing coercion re-

sistance (defined as a stronger property than receipt freeness, also assuring defence

12

against randomisation and forced abstention) while maintaining universal verifiability.

However, JCJ does not attempt to achieve cast-as-intended verifiability.

A commonality between Helios and JCJ is the concept of a web bulletin board: a

publicly-accessible list of entries containing various kinds of data related to the elec-

tion. This concept continues to be popular well into the present [18]. Another shared

primitive is that of a shuffle proof (or verifiable shuffle), where an untrusted server shuf-

fles a list of encrypted data such that nobody except the server knows the relationship

between the input and output, but any public observer can be confident that no entries

were added or removed. This construction has remained popular in recent research [19].

By composing several servers to form a mix network (or simply mix-net), privacy can

be assured assuming at least one of the servers maintains privacy.

JCJ along with many other voting schemes rely on distributing a secret to voters

before they cast a vote; in JCJ, this secret is referred to as the voter’s “credential”. Many

other schemes use an approach called code voting where a voter is provided with a set of

verification codes that must remain secret, such as Remotegrity [20] and Beleniosvs [21]

in which a mailed code sheet is used to cast and check votes, the Norwegian internet

voting system [5] in which an encrypted vote is cast and a confirmation code is checked

against the code sheet, and Pretty Good Democracy [22] in which codes are used to

send the vote and a return code is checked for verification. As discussed in Section 1.2,

there is a critical limitation with such an approach: the integrity of the election depends

on the secrecy of the codes (or the credentials for JCJ). Our proposed protocol does not

suffer from this weakness.

It is worth noting further that code voting schemes often become unwieldy for pref-

erential voting1 as used in countries such as Australia [23]; one major benefit of the

protocol we propose is that it naturally supports preferential voting.

Another area of related work includes efforts to combine plain paper ballots with

cryptographic verification, but without the remote voting aspect of our protocol. Scant-

egrity II [24] augments “fill in the bubble” paper voting systems such as those com-

monly used in the US with end-to-end verifiability using a form of code voting. Another

approach, similar in spirit to Helios, allows cast-as-intended verifiability via auditing
1Sometimes called “ranked choice voting”.

13

and sealing votes and produces a cryptographic hash as a voter receipt; systems us-

ing this technique include STAR-Vote [25] and ElectionGuard [26]. Our protocol uses

a broadly similar idea with the added benefits of remote voting and passive receipt-

freeness.

14

3 Cryptographic tools

Having given an overview of the world of electronic voting, we now turn our attention

to the details of the cryptographic tools we will rely on. The particulars of our chosen

cryptosystem and its relationship to zero-knowledge proofs form a crucial part of our

voting protocol, and the properties of these proofs will be vital when we turn our atten-

tion to proving security properties. We first discuss the cryptosystem itself and prove

its security, then provide some key definitions and intuitions for the aforementioned

zero-knowledge proofs.

The standard approach to proving desirable properties of cryptographic protocols is

to define a game between an adversary and a challenger, and to argue that the adversary

can win only if they are very lucky. This is made formal below.

Definition 1 (Negligible function). A function f : N → R is negligible if for all

polynomials poly(x), there exists N > 0 such that for all x > N

|f(x)| < 1

poly(x)

We will write f(x) = negl(λ) as shorthand to mean “there exists a negligible

function negl such that f(x) = negl(λ)”.

Our adversary then should only be able to win the game with a negligible probability

as a function of some security parameter. We will formally define what we mean by

“adversary” as follows:

Definition 2 (Probabilistic polynomial-time (PPT) adversary). A probabilistic

polynomial-time adversary (denoted A) is an interactive algorithm that runs in

polynomial time and has access to a randomness source.

Many of the games we will use involve the adversary outputting a single bit at the

end that is compared against another to determine whether they win. It follows that the

adversary can always win with at least 50% probability, so we will instead talk about a

negligible advantage over tossing a coin.

15

Definition 3 (Advantage). An adversary A has advantage ε in game G if

Pr [A wins G] =
1

2
+ ε

We will write Adv(A, G) = ε.

Given two games Gi, Gj we say A’s advantage between the two games is

AdvGi,Gj
(A) = 1

2

∣∣∣Adv(A, Gi)− Adv(A, Gj)
∣∣∣

3.1 Mathematical conventions

We use the following conventions throughout:

• The natural numbers N are the set of non-negative integers.

• The additive group of integers modulo q will be written Zq, and the multiplicative

group of integers modulo p will be written Z×
p . In cases where the group operation

is clear, we will omit mod q and mod p from equations.

• An element r chosen from a set X uniformly at random will be written r ←R X .

3.2 The ElGamal cryptosystem

The ElGamal cryptosystem is an asymmetric probabilistic encryption scheme defined

as follows, based on the definition appearing in [27]. Its security requires that the

decisional Diffie-Hellman assumption (DDH) holds in the group G. In essence, DDH

requires that discrete logarithms are hard to compute in the relevant group.

Definition 4 (The ElGamal cryptosystem). The generation algorithm Gen(λ) for

security parameter λ ∈ N runs as follows: let G be a cyclic group of order q and

g ∈ G be a generator, where q is a λ-bit prime. Choose a random element x←R Zq

and let y = gx. The public key of the scheme is (G, g, q, y) and the secret key is

(G, g, q, x).

16

Encryption is performed by generating a randomisation factor r ←R Z and

defining the encryption Encr : G×G→ G×G of a message m (which, importantly,

must be an element of the group) to be

Encr(y,m) = (gr,m · yr)

We define the decryption Dec : Zq ×G×G→ G of a ciphertext (a, b) to be

Dec(x, a, b) = b · a−x

If (a, b) is an encryption of m then b · a−x = m · grx · g−rx = m.

In contexts where the relevant public key y and the corresponding secret key x are

clear, we will omit them from the arguments of Encr and Dec.

It is not immediately clear that such a group, its operations, and an appropriate

generator g can be efficiently computed. We will discuss these practical considerations

below.

The ElGamal cryptosystem is at the heart of the protocol, used both to preserve

voters’ privacy as well as to ensure the electoral commission’s integrity. We use El-

Gamal for two primary reasons: the construction of ElGamal makes it easy to produce

proofs of statements about its ciphertexts (such as whether they decrypt to what they

are supposed to), and ElGamal encryption can be defined to be multiplicatively homo-

morphic (i.e. Encr1+r2(m1 ·m2) = Encr1(m1) · Encr2(m2)) or additively homomorphic

when the message is instead gm. These properties will be critical later when proving

the authenticity of votes.

Note that any additively homomorphic scheme supporting proof constructions would

suffice, and in practice ElGamal can be defined over any cyclic group in which deci-

sional Diffie-Hellman is hard. Our prototype implementation uses an elliptic curve

group for efficiency.

3.2.1 Security of ElGamal

We will use a standard definition of security based on indistinguishability: an adversary

should not be able to tell the difference between any two ciphertexts. The goal is to

17

show that we have this property even under a chosen plaintext attack (CPA), in which

the adversary can learn information about an unknown ciphertext by encrypting known

messages. Clearly if the adversary can decrypt without the key, they can succeed at

this attack; by contraposition, an adversary who cannot succeed at this attack cannot

succeed at general decryption.

Definition 5 (IND-CPA secure). Given a public key cryptosystem Π with security

parameter λ, consider the game GΠ,λ
IND-CPA between adversary A and challenger C:

1. C runs Gen(λ) computes public and secret keys (pk, sk) and sends pk to A.

C provides A with oracle access to Encpk.

2. A sends a pair of messages m0,m1 to C.

3. C chooses a random bit b ←R {0, 1}, and the ciphertext Encpk(mb) is com-

puted and sent to A.

4. A outputs a bit b∗.

A wins the game if and only if b∗ = b. If for all PPT adversaries A

Adv
(
A, GΠ,λ

IND-CPA

)
= negl(λ)

we say Π is IND-CPA secure (indistinguishable-chosen plaintext attack secure).

We provide proofs that ElGamal has the standard security properties for public key

cryptosystems (that is, that an adversary has only a small probability of successfully

breaking the system). Definitions and proofs below are based on those in [27].

We begin with a standard problem that is believed to be computationally difficult to

solve (in some groups). We will phrase the problem as a game and demonstrate that an

adversary has a negligible advantage over a coin toss in the game. Intuitively, the goal is

to be able to distinguish between the triples (ga, gb, gab) and (ga, gb, gc) for a generator

g and uniformly random a, b, c.

18

Definition 6 (Decisional Diffie-Hellman (DDH)). Given a cyclic group G and an

element g of order q ≈ 2λ, consider the following game GG,g,q
DDH between adversary

A and challenger C:

1. C chooses a, b, c uniformly at random from Zq, and calculates x0 = gc and

x1 = gab.

2. C sends ga and gb to A.

3. C chooses a random bit i and sends xi to A.

4. A outputs a bit i∗.

A wins if b′ = i. If for all PPT adversaries Adv(A, GG,g,q
DDH) = negl(λ), we say the

DDH assumption holds in G.

We will now prove IND-CPA security of ElGamal by reduction to DDH.

Theorem 1. If the DDH assumption holds in G, the ElGamal cryptosystem (with secu-

rity parameter λ) is IND-CPA secure.

Proof. Let A be a PPT adversary for IND-CPA with advantage ε, and consider a PPT

adversary B for DDH. On input ga, gb, x, it acts as the challenger to A, giving it the

alternative encryption oracle EncB(m) = (gb, x ·m).

Case 1: if x = gc, then EncB(m) is a uniformly random pair of elements, so

Adv
(
A, GΠ,λ

IND-CPA

)
= 0.

Case 2: if x = gab, then EncB(m) is a faithful encryption of m with randomness gb

and secret key a, so Adv
(
A, GΠ,λ

IND-CPA

)
= ε.

By outputting the same bit as A, B has advantage at most ε in GG,g,q
DDH . Since the

DDH assumption holds in G, we must have ε = negl(λ), so the ElGamal cryptosystem

is IND-CPA secure.

3.2.2 Choosing an appropriate group

Recall from Definition 4 that we need a group G with an element g ∈ G of order q. We

will need a prime number of a particular form to produce our group.

19

Definition 7 (Safe prime). A prime p is safe if p = 2q + 1 for some other (large)

prime q.

Let G = Z×
p be the multiplicative group of integers modulo a safe prime p = 2q + 1.

We first demonstrate that this is a cyclic group of order p− 1 = 2q. The proof is due to

[28].

Lemma 2. Let G be a finite Abelian group, and n be the maximal order among elements

of G. Then for all g ∈ G, the order of g divides n.

Proof. Let g ∈ G have the maximal order n and choose an element h ∈ G with order

m. Suppose by way of contradiction that m does not divide n; then there is some prime

p with a power in m greater than its power in n. Let pe be the greatest power of p in m

and pf be the greatest power of p in n. Then gp
f
hm/pe has order

n

pf
pe = npe−f > n

contradicting the maximality of n.

Lemma 3. Z×
p is cyclic with order p− 1.

Proof. Let n ≤ p − 1 be the maximal order among elements of Z×
p . Every element

has order o|n by Lemma 2, so for all a ∈ Z×
p we have an = 1. This equation has at

most n solutions, and we have produced p − 1 solutions already; therefore p − 1 ≤ n.

Combining the inequalities gives n = p−1, so we have an element of order p−1 = |Z×
p |

as required.

Unfortunately Z×
p does not satisfy the decisional Diffie-Hellman (DDH) assump-

tion, so we will not have the desired security properties:

Lemma 4. Let g be a generator of Z×
p for a prime p. For all x ∈ Z×

p , let a = gx. Then

a
p−1
2 = 1 if and only if x is even, and a

p−1
2 = −1 if and only if x is odd.

Proof. Suppose x is even; let x = 2y. Then

a
p−1
2 = (gx)

p−1
2 = g2y

p−1
2 = (gp−1)y = 1

20

Suppose x is not even; let x = 2y + 1. Then

a
p−1
2 = (gx)

p−1
2 = g(2y+1) p−1

2 = (gp−1)yg
p−1
2 = g

p−1
2 ̸= 1

In particular g is a generator so g
p−1
2 ̸= 0. By Fermat’s little theorem we have

ap−1 = 1 or equivalently in the prime ring Zp

(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
≡ 0 mod p

In the case under discussion, we are left with a
p−1
2 = −1.

Theorem 5. Z×
p does not satisfy DDH.

Proof. Let g ∈ Z×
p be a generator and a, b ∈ Z×

p be arbitrary. By Lemma 4, (ga)
p−1
2 = 1

if and only if a is even, and similarly (gb)
p−1
2 = 1 if and only if b is even. So, given ga

and gb, we can determine the value of
(
gab
) p−1

2 : it is 1 if and only if a and b are not both

odd, and −1 otherwise. Thus we can distinguish gab from gc for a random c ∈ Z×
p .

Happily, there is a subgroup of Z×
p that is believed to satisfy DDH.

Definition 8 (Quadratic residue). a is a quadratic residue mod p if there exists

x ∈ Z such that

x2 = a mod p

Z×
p has a subgroup of order q (since p − 1 = 2q). Euler’s criterion tells us that

there are p−1
2

= q quadratic residues modulo p, so we might hope that this subgroup is

precisely the quadratic residues modulo p. For the below discussion, we assume that

p > 3.

Lemma 6. The quadratic residues mod p form a group under multiplication.

Proof. Let x2, y2 ∈ Z×
p be quadratic residues mod p. Then x2y2 = (xy)2 is also a

quadratic residue, as is (x2)−1 = (x−1)2 (where x−1 = xp−2). Associativity is immedi-

ate from the definition.

21

Lemma 7. The group of quadratic residues mod p = 2q + 1 is the subgroup of Z×
p of

order q.

Proof. Clearly 22 is a quadratic residue and does not have order 2 or 1. (22)q = 22q =

2p−1 = 1 so it has order q, and thus generates the subgroup of order q.

We therefore have a good candidate cyclic group for our ElGamal cryptosystem:

choose a safe prime p = 2q + 1, and take the subgroup of Z×
p generated by 22. In

particular, every element is an even power of g, so Lemma 4 does not apply.

It remains to find a way to encode data as elements of this group; one possible

choice is outlined below (via [27]). Let Gp be the group of quadratic residues modulo a

safe prime p.

Theorem 8. Let p be a safe prime congruent to 3 modulo 4 (so p = 4i + 3 for some

i ∈ Z).

π : Zq → Gp, π(m) = (m+ 1)2 mod p

is a bijection with inverse

π−1(x) = −1 +

x
p+1
4 x

p+1
4 ≤ q

−x p+1
4 otherwise

Proof. Note that x
p−1
2 = 1 by Lemma 4, since x is a quadratic residue. Then we have

as one square root

x = x
p−1
2

+1 = x2i+2 = (xi+1)2 =
(
x

p+1
4

)2
To find the other square root:

(
p− x

p+1
4

)2
= p2 − 2px

p+1
4 + x

p+1
2 ≡ x

p+1
2 mod p = xq+1 = x

We have q = p−1
2

so exactly one of these is less than or equal to q; then bijectivity

follows from the fact that |Zq| = |Gp|.

22

3.2.3 Elliptic curve groups

A drawback of the group proposed in Section 3.2.2 is that practical security recommen-

dations generally ask for keys of 3072 or even 4096 bits, which are slow to transmit and

process [29]. One way to address this issue is to use a different group with smaller keys

that offer about the same level of security. For example, typical elliptic curve groups

give 256-bit keys with security comparable to 3072-bit integer keys [30]. The group

used in our example implementation is such a group. While the theory of elliptic curves

is deep and beyond what this section can cover, a brief overview follows.2

Definition 9 (Elliptic curve). An elliptic curve over the finite field K is the set of

points (x, y) ∈ K2 satisfying the equation

y2 = x3 + ax+ b

for fixed a, b ∈ K together with a point at infinity O.

A group structure can be defined over such a curve in the following manner: let P

be a point on the elliptic curve and −P be the point opposite it (uniquely defined since

all such curves are symmetric about the x axis). Given another point Q, draw the line

intersecting P and Q.

1. If the line intersects a third point R, define P +Q = −R.

2. Define P +O = O + P = P (so that O is the identity element).

3. If Q = −P , define P +Q = O.

4. If P = Q:

(a) If the tangent line at P intersects a second point R, set P + P = −R.

(b) Otherwise, set P + P = −P .
2There are a number of equivalent descriptions, such as equations of the form y2 = x3+ax2+x; we

use the “Weierstrass equation” form for simplicity.

23

Rather surprisingly, the set of points under such an operation forms an Abelian group

and thus a Z-module, allowing us to consider elements such as nP = P + P + . . . +

P (n times). We can use this structure to define an ElGamal cryptosystem over a cyclic

elliptic curve group (or prime-order subgroup) of order q with generator G as follows:

• Gen(λ): choose a secret key x ∈ Zq, and set the public key Y = xG.

• Encr(m): output the pair (rG,M + rY).

• Dec(A,B): output B − xA.

3.2.4 Sharing an ElGamal key between trustees

It is easy to generalise ElGamal to a distributed system of n trustees, rather than putting

ultimate faith in one keyholder. This is done by splitting the secret key x into n pieces

x1, . . . , xn so that their sum
∑

i xi = x.

Definition 10 (The distributed ElGamal encryption scheme). The generation algo-

rithm Gen(λ) for security parameter λ runs as follows: let G be a cyclic group of

order q and g ∈ G be a generator, where q is a λ-bit prime. For 1 ≤ i ≤ n, the ith

trustee chooses xi ←R Zq uniformly at random (forming a vector x), and publishes

yi = gxi . Let y =
∏

i yi = g
∑

i xi . The public key of the scheme is (G, g, q, y), and

the secret keys are (G, g, q, xi).

Given a uniformly random r ∈ Z, define the encryption Encr : G×G→ G×G

of a message m to be

Encr(y,m) = (gr,m · yr)

Define the decryption DecDist : Zn
q ×G×G→ G of a ciphertext (a, b) to be

DecDist(x, a, b) = b · a−
∑

i xi

To calculate this value, the ith trustee publishes their decryption share (axi , ri).

They can then recover the decryption factor

24

a
∑

i si =
∏
i

bxi

Extending this definition to a k-out-of-n system, where instead any k < n trustees

can decrypt the ciphertexts, is only somewhat more difficult; see [31] for a full treatment

based on Shamir secret sharing [32]. The essential idea is to construct a polynomial

of degree k − 1 whose constant term is the secret key, then to give one point on the

polynomial to each trustee. In this way k trustees can recover the secret key, since k

points define such a polynomial uniquely. A series of extensions based on this idea were

used by Pedersen to produce a protocol with no trusted party, where only a coalition of

at least k trustees learn any information about the secret key [31]. This Pedersen secret

sharing system is what we will use in our implementation.

3.2.5 The homomorphic property of ElGamal

ElGamal encryption is multiplicatively homomorphic: given two messages m1,m2

form the ciphertexts C1 = (gr1 ,m1 · yr1) and C2 = (gr2 ,m2 · yr2). The product of

these ciphertexts

C1 · C2 = (gr1+r2 ,m1 ·m2 · yr1+r2)

is then an encryption of m1 · m2. A minor variant of ElGamal allows one to define a

additively homomorphic encryption function: construct instead the ciphertexts C1 =

(gr1 , gm1 · yr1) and C2 = (gr2 , gm2 · yr2). Their product is

C1 · C2 = (gr1+r2 , gm1+m2 · yr1+r2)

which is then an encryption of gm1+m2 .3 The difficulty arises when decrypting this

ciphertext: the message we calculate is gm, and recovering m is the discrete logarithm

problem—which is hard by assumption. In practice, this means only messages known

to come from a small set can be decrypted when using this form of ElGamal.

3The careful reader will have noticed that m1,m2 were defined to be elements of a multiplicative
group originally. For this to make any sense, there needs to be a way to embed messages (i.e. elements of
G) into Zq that respects the operations. For example, if G is a subgroup of Z×

p for a safe prime p = 2q+1,
then G also forms a ring with a canonical embedding into Zq .

25

This property allows reconstruction of the encrypted MAC from the encrypted vote

and therefore validation of its authenticity without having to perform decryption first

(which would risking voter privacy). The MAC does not need to be decrypted when

being checked; the vote does but by encoding votes e.g. as a binary string of zeroes

with a 1 for the selected candidates, votes can be restricted to a small set.

3.2.6 Re-randomisation of ciphertexts

A useful property of ElGamal is that an encryption (a, b) = (gr,myr) of a message m

can easily be re-randomised to produce a different encryption of m: choose ρ ∈ Zq,

and output (a · gρ, b · yρ). Given the output, it is computationally infeasible to identify

that it is a re-randomisation of the input ciphertext. We refer to such an operation as

Rerandρ({m}pk). Note that by the homomorphic property, we can write

Rerandρ({m}pk) = Encρ(1) · {m}pk

3.3 Pedersen commitments

A Pedersen commitment [33] allows a party to commit to a value x without revealing

any information about that value, and later reveal the value while demonstrating (except

with negligible probability) that they did not change it. This is achieved by choosing

two generators of a large cyclic group G and calculating the product of those generators

raised to particular powers.

Algorithm 1 Pedersen commitment: Commit(x, r)

Public input: a cyclic group G of prime order P , and generators G,H
Private input: a value x ∈ ZP and a blinding factor r ← ZP chosen uniformly at
random
Output: a group element Commit(x, r)

1: Output GxHr.

To open the commitment (revealing what the value was), the party simply reveals

the values of x and r. Except with negligible probability, these are the same values they

originally committed to. The reduction is straightforward:

26

Theorem 9. Let G be a cyclic group of prime order P , and let G,H ∈ G be generators.

If the discrete logarithm assumption holds in G, then a probabilistic polynomial time

algorithm has only a negligible probability of computing distinct openings x ̸= x′, r ̸=

r′ of a Pedersen commitment.

Proof. We have x ̸= x′, r ̸= r′ such that

GxHr = Gx′
Hr′

Suppose that H = Gz so that z = dlogGH . Then Gx−x′
= Hr′−r = Gz(r′−r) so we can

compute

z = (x− x′)(r′ − r)−1 mod P

A probabilistic polynomial time algorithm has negligible probability of computing such

a discrete logarithm, so it can produce distinct openings x ̸= x′, r ̸= r′ with only

negligible probability.

This scheme is perfectly-hiding: from an information-theoretic perspective, the

commitment reveals nothing about the values of x and r. Indeed, any commitment

C = Commit(x, r) is equally likely to be a commitment to any r: we have C =

GxHr = Gx+rz where x = dlogGH , so there is a bijection between commitment-x

pairs and values of r. Therefore C alone cannot reveal any information about x.

This concept can be extended to commit to a vector of values. Choose indepen-

dent generators g, h1, . . . , hN ∈ G, and a randomisation factor r ∈ ZP . Construct a

commitment to N messages m = (m1, . . . ,mN) ∈ ZN
P by setting

Commit(m, r) = gr
N∏
i=1

hmi
i

Related to this idea, but historically a separate field of study, is the concept of zero-

knowledge proofs.

27

3.4 Zero-knowledge proofs

A zero-knowledge proof addresses a situation where one party, the prover, knows a

secret (e.g. the solution to an equation) and wishes to demonstrate this knowledge to

the other party, the verifier. We will make extensive use of zero-knowledge proofs to

demonstrate that the electoral commission and the trustees do not attempt to cheat the

election. To this end, we will discuss two parties: the prover P which takes a statement

with a corresponding secret and constructs a proof of the statement, and the verifier V

which takes a statement with a proof and verifies the proof. Formally, for a statement

y about a secret x the prover runs a (probabilistic) algorithm π ← Prove(x, y), and the

verifier runs a (deterministic) algorithm Verify(π, y) outputting either accept or reject.

Zero-knowledge proofs rely on three key properties:

1. completeness: if the prover honestly knows the secret, they must be able to con-

struct a proof π for which Verify(π, y) = accept.

2. soundness: a prover who does not know the secret must not be able to construct a

proof π for which Verify(π, y) outputs accept, except with negligible probability.

3. zero-knowledge: the verifier must learn nothing apart from that the prover knows

a secret satisfying the required conditions.

The prover and verifier may either be honest (meaning they correctly follow the proto-

col), or dishonest (meaning they deviate from the protocol). The treatment that follows

is based on that of [34].

The prover will construct a proof of some statement y from a set of statements Y .

We formalise what it means for a statement to be true:

Definition 11. LetR ⊆ X ×Y be an efficiently recognisable relation; that is, there

exists a polynomial-time algorithm that decidesR.

• A statement y ∈ Y is a true statement if there exists a witness x ∈ X such

that (x, y) ∈ R. Otherwise, y is a false statement.

28

• The language defined byR is the set of true statements

LR = {y ∈ Y | ∃x ∈ X s.t. (x, y) ∈ R}

For example, one may wish to prove they know the discrete logarithm of y = gx;

the statement would be (y, g) ∈ Y with witness x. The zero-knowledge proofs we

use are of a particular form described below (due originally to [35]); such proofs are

well-studied and have a rich array of useful properties.

Definition 12 (Σ-protocol). A Σ -protocol for an efficiently recognisable relation

R ⊆ X × Y and a finite challenge space C is two interactive PPT algorithms: a

prover P that takes as input (x, y) ∈ R, and a verifier V that is given y. They

engage in the following interaction:

1. P chooses a commitment t and sends it to V .

2. V chooses a challenge c ∈ C and sends it to P .

3. P computes a response z and sends it to P .

4. V deterministically outputs either accept or reject, using only the statement

y and the conversation (t, c, z)

We require a Σ-protocol to be complete: for all (x, y) ∈ R, given an honest prover

P (x, y), V (y) must always output accept.

We now define the other key properties of a zero-knowledge proof. It is not im-

mediately clear what it means for a computer or an algorithm to “know” something.

The standard approach is to construct an extractor algorithm that, given two accepting

conversations with the same commitment, can deterministically calculate the secret. To

make use of this, we will imagine that we can run the protocol, and then “rewind” P to

the step just before it received the challenge. We will then give it a different challenge.

If the challenge space C is large and V accepts both conversations, then we can be con-

fident that P knows the witness—otherwise, P has been very lucky indeed to be able to

answer both challenges correctly.

29

Definition 13 (Knowledge soundness). A Σ-protocol satisfies knowledge sound-

ness if there is a polynomial-time extractor algorithm Ext that, given a statement

y ∈ Y and two accepting conversations with the same commitment (t, c, z) and

(t, c′, z′), outputs a witness x ∈ X such that (x, y) ∈ R.

The standard definition of zero-knowledge is a little subtle. The idea is to show

there is a simulator that can produce an accepting conversation for any statement out of

thin air. Then an adversary learns nothing from eavesdropping on (or participating in)

the conversation—since they could have just simulated it instead.

Definition 14 (Special honest verifier zero knowledge). A Σ-protocol is special

honest verifier zero knowledge if there exists a PPT simulator algorithm Sim such

that:

1. for all inputs (y, c) ∈ Y×C, Sim outputs (t, z) such that (t, c, z) is an accept-

ing conversation for y.

2. for all (x, y) ∈ R, if we choose c ←R C and (t, z) ←R Sim(y, c) uniformly

at random, then (t, c, z) has the same distribution as conversations between

P (x, y) and V (y).

Note that condition 1 requires the simulator to always produce an accepting conver-

sation, even for a false statement. Condition 2 requires the simulated conversations to

be indistinguishable from real conversations.

It is counter-intuitive that we may assume the verifier is honest; what is the use of

zero-knowledge if a cheating verifier can cause a prover to leak information by choosing

their challenge carefully? However, it is possible to transform the interactive protocols

we will discuss into non-interactive protocols – that is, protocols where the prover uses a

fixed challenge rather than requiring the verifier to generate one– using the Fiat-Shamir

transformation. Because of this, honest verifier zero knowledge is strong enough for

most applications.

30

3.4.1 Non-interactivity and the Fiat-Shamir transformation

The Fiat-Shamir transformation is a fundamentally simple idea. Recall we have a state-

ment y with witness x. Instead of waiting for a verifier to send us a challenge c, set

c = Hash(y, t) where Hash : Y × T → C. We argue that this is verifiable (since a veri-

fier can check that the challenge is indeed the resulting hash) and sound (since the hash

cannot be efficiently manipulated to give a known response).Formally, a non-interactive

proof system (which we will make heavy use of) is defined as follows (after [34]).

Definition 15 (Non-interactive proof system). Let R ⊆ X × Y be an efficiently

recognisable relation. A non-interactive proof system for R is a pair of efficient

algorithms:

• Gen(x, y) for a pair (x, y) ∈ R that probabilistically produces a proof π ∈

PS; and

• Check(y, π) for a statement y ∈ Y and a proof π ∈ PS that checks the proof

and outputs either accept or reject.

We assume that Gen(x, y) always produces a correct proof.

This situation gives rise to a natural question: if an untrusted prover can choose

which statement they would like to prove, does soundness become trivial? After all,

perhaps they could choose their statement or commitment carefully so that the resulting

challenge c = H(y, t) fits an easy-to-compute response z. To this end, our proofs will

need to satisfy a stronger kind of soundness:

Definition 16 (Non-interactive existential soundness). Let Φ = (Gen,Check) be

a non-interactive proof system. The adversary outputs a statement y ∈ Y with

proof π ∈ PS, and wins if Check(y, π) = accept but y /∈ LR. We say that Φ is

existentially sound if all probabilistic polynomial-time adversaries have a negligible

probability of winning.

This definition captures the essential idea that a non-interactive prover is free to

choose which statement they would like to prove—and this should not allow them to

31

produce false proofs. To review: a Σ-protocol using the Fiat-Shamir transformation pro-

duces a non-interactive proof of the form π = (t, z) ← Gen(x, y) containing the com-

mitment and response, where the challenge is c = Hash(y, t). Note that specifically, we

require our proofs to be universally verifiable: any public observer should be confident

that the provided non-interactive proof is correct. Fortunately, any knowledge-sound

Σ-protocol is existentially sound; we provide a proof after that in [34].

Theorem 10. Let Π be a Σ-protocol with a large challenge space so that |C| = 2λ for

security parameter λ. If Π satisfies knowledge soundness, then Π is existentially sound.

Proof. Let A be a PPT algorithm, which chooses a false statement y and commitment

t. Suppose by way of contradiction that there were two challenges c ̸= c′ yielding

accepting conversations (t, c, z) and (t, c′, z′) for y; knowledge soundness implies there

exists a witness x for y, which is false by assumption. ThusA can win only by guessing

c with negligible probability 1
2λ

.

We will discuss several such non-interactive proofs in the following sections. In

each case, we also provide an explicit verification algorithm; a careful specification of

theirs is important to avoid issues discussed in [36]. We do not have room to discuss

formal proofs of their properties, but refer the interested reader to [34] which covers

the ideas in great detail. We will assume the presence of a hash function Hash that

accepts inputs from any set and outputs an integer. In each of the below algorithms, G

represents a description of a group; for example, a description of Zq could be (‘Z ′, q)

where ‘Z ′ is a character literal.

3.5 Preimage proofs

Proof of knowledge for discrete logarithms. The simplest proof we will use is the

Schnorr proof [37]. The prover P publishes a group G, a base element g ∈ G of order

q, and another element y = gx for some secret x. P produces a proof that it knows the

value of x. The algorithms are provided as Algorithms 2 and 3.

Note for an honest prover gz = gw · gcx = gw · (gx)c = w · yc. This proof will form

the basis of more sophisticated proofs below.

32

Algorithm 2 Proof of knowledge for discrete logarithms
Public input: a group G of order q and two elements g, y ∈ G
Private input: a power x ∈ Zq such that y = gx

Output: a commitment t ∈ G and a response z ∈ Zq

1: w ←R Zq

2: t← gw

3: c← Hash(G, g, q, y, t)
4: z ← w + c · x
5: return (t, z)

Algorithm 3 Verification for 2
Input: a group G of order q, two elements g, y ∈ G, a commitment t ∈ G, and a
response z ∈ Zq

Output: either accept or reject
1: c← Hash(G, g, q, y, t).
2: if gz = w · yc then
3: return accept
4: else
5: return reject

Preimages. The structure of the above proof can be generalised to a more abstract

model, which will be useful later. Let ϕ : X → Y be a one-way group homomorphism4;

that is, one for which given only y = ϕ(x) it is hard to compute a preimage x. We will

construct a Σ-protocol forming a non-interactive proof that the prover knows such a

preimage, following [38]. The algorithms are provided as Algorithms 4 and 5.

Algorithm 4 Proof of knowledge for homomorphism preimages
Public input: descriptions of groups X and Y , a group homomorphism ϕ : X → Y ,
and an element y ∈ Y
Private input: an element x ∈ X such that y = ϕ(x)
Output: a commitment t ∈ Y and a response z ∈ Y

1: w ←R Zq

2: t← ϕ(w)
3: c← Hash(X ,Y , ϕ, y, t)
4: z ← w · xc

5: return (t, z)

The proof of knowledge for discrete logarithms is then the special case where

ϕ(x) = gx. (In that particular case, the group operation is + and xc means c · x.)

4The notation ϕ : X → Y suggests our use case: typically, X will be the set of witnesses and Y will
be the set of statements.

33

Algorithm 5 Verification for 4
Public input: descriptions of groups X and Y , a group homomorphism ϕ : X → Y ,
an element y ∈ Y , a commitment t ∈ Y , and a response z ∈ Y
Output: either accept or reject

1: c← Hash(G, g, q, y, t).
2: if ϕ(z) = ϕ(w) · yc then
3: return accept
4: else
5: return reject

For a more in-depth analysis of the preimage proof construction, see [39].

3.6 Applications of preimage proofs for discrete logarithms

Plaintext knowledge. A proof of knowledge for discrete logarithms can be read-

ily extended to proving plaintext knowledge for ElGamal encryption: assuming that

(a, b) = (gr,myr) is a genuine ciphertext, then proving knowledge of r suffices to

prove knowledge of m since the prover could simply raise y to that power and divide

to recover m. To be an existentially sound proof, the challenge hash must now include

both elements of the ciphertext; see [36] for examples of what can go wrong if we do

not do so. The algorithms are provided as Algorithms 6 and 7.

Algorithm 6 Proof of plaintext knowledge: PrfKnow({m}pk)
Public input: an ElGamal public key (G, g, q, y) and a ciphertext (a, b) ∈ G×G
Private input: a randomisation factor r and a message m such that (a, b) = (gr,myr)
Output: a commitment t ∈ G and a response z ∈ Zq

1: w ←R Zq

2: t← gz

3: c← Hash(G, g, q, y, a, b, t)
4: z ← w + c · x
5: return (t, z)

Equality of discrete logarithms. Another useful extension of this idea allows a prover

to demonstrate knowledge of x such that u = gx and v = hx, or in other words that

dloggu = dloghv. The proof essentially works by running two instances of Algorithm 2

simultaneously.

34

Algorithm 7 Verification for 6
Input:an ElGamal public key (G, g, q, y), a ciphertext (a, b) ∈ G × G, a commitment
t ∈ G, and a response z ∈ Zq

Output: either accept or reject
1: c← Hash(G, g, q, y, a, b, t)
2: if gz = t · yc then
3: return accept
4: else
5: return reject

Algorithm 8 Proof of equality for discrete logarithms: PrfEqDlogs(g, h, u, v)
Public input: a group G of order q and four elements g, h, u, v ∈ G
Private input: a scalar x such that u = gx and v = hx

Output: commitments t1, t2 ∈ G and a response z ∈ Zq

1: w ←R Zq

2: t1, t2 ← gw, hw

3: c← Hash(G, g, q, h, u, v, t1, t2)
4: z ← w + c · x
5: return (t1, t2, z)

Algorithm 9 Verification for 8
Input: a group G of order q, four elements g, h, u, v ∈ G, commitments t1, t2 ∈ G, and
a response z ∈ Zq

Output: either accept or reject
1: c← Hash(G, g, q, h, u, v, t1, t2)
2: if gz = t1 · uc and hz = t2 · vc then
3: return accept
4: else
5: return reject

35

Proof of decryption. The above proof can be immediately applied to prove that a ci-

phertext has been decrypted honestly. Recall to decrypt a ciphertext (a, b), we compute

a′ = ax where y = gx and output b/a′. The question is whether a′ was honestly com-

puted, rather than being chosen such that b/a′ is whatever the decryptor wishes it to be.

The prover therefore must demonstrate that a′ = ax and y = gx. Again, we must adjust

the challenge calculation to contain all relevant parameters. The algorithms are given

in Algorithms 10 and 11.

Algorithm 10 Proof of correct decryption: PrfDecrypt(a, b)
Public input: an ElGamal public key (G, g, q, y) and a ciphertext (a, b)
Private input: the corresponding ElGamal secret key x
Output: a decryption factor a′ ∈ G, commitments w1, w2 ∈ G, and a resulting message
m

1: w ←R Zq

2: t1, t2 ← aw, gw

3: a′ ← ax

4: m← b/a′

5: c← Hash(g, q, y, a, b, a′,m, t1, t2)
6: z ← w + c · x
7: return (a′, t1, t2, z,m)

Algorithm 11 Verification for 10
Input: an ElGamal public key (G, g, q, y), a ciphertext (a, b), a decryption factor a′ ∈
G, commitments t1, t2 ∈ G, and a resulting message m
Output: either accept or reject

1: c← Hash(g, q, y, a, b, a′,m, t1, t2)
2: if az = t1 · a′c and gz = t2 · yc then
3: return accept
4: else
5: return reject

Note that this proof can be easily extended to a system of n trustees sharing a secret

key by computing commitments, decryption factors, challenges, and responses for each

trustee, together with a round of Pedersen commitment and reveal to ensure malicious

trustees do not attempt to bias the Σ-protocol commitments.

Plaintext equality. Another application of the above proofs allows the prover (hold-

ing the secret key) to demonstrate whether two ciphertexts are encryptions of the same

36

message. The idea will be to divide the ciphertexts (a1, b1), (a2, b2) element-wise, expo-

nentiate the result to obscure any information about the plaintext, and decrypt the final

ciphertext. If the resulting message is 1, the plaintexts are equal except with negligible

probability: if we are very unlucky (or the prover is malicious), the randomisation factor

may be the order of the group, resulting in the identity ciphertext (1, 1) which will al-

ways be an encryption of 1. The instantiation of the proof that follows is based on [36],

and is originally due to Jakobsson & Juels [40]. It is made slightly complex because

a stronger challenge is needed than the usual challenge in PrfEqDlogs and PrfDecrypt:

we combine both into a single proof, complicating the statement and therefore the chal-

lenge. The algorithms are provided as Algorithms 12 and 13.

Algorithm 12 Plaintext equivalence proof
Public input: an ElGamal public key (G, g, q, y) and a pair of ciphertexts
(a1, b1), (a2, b2)
Private input: the corresponding ElGamal secret key x
Output: commitments d′, e′, t1, t2, t′1, t

′
2 ∈ G, responses z, z′ ∈ Zq, a decryption factor

a′ ∈ G, and a bit IsEq
1: (d, e)← (a1/a2, b1/b2)
2: z ←R Zq

3: d′, e′ ← dz, ez

4: ▷ Construct the proof of equality for discrete logarithms
5: w ←R Zq

6: t1, t2 ← dw, ew

7: ▷ Construct the proof of correct decryption
8: w′ ←R Zq

9: t′1, t
′
2 ← d′w

′
, e′w

′

10: a′ ← d′x

11: m← e′/a′

12: if m = 1 then
13: IsEq← 1
14: else
15: IsEq← 0

16: ▷ Generate challenge and finish proofs
17: c← Hash(G, g, q, y, d, e, d′, e′, a1, b2, a2, b2, a

′, IsEq, t1, t2, t
′
1, t

′
2)

18: z ← w + c · x
19: z′ ← w′ + c · x
20: return (d′, e′, t1, t2, t

′
1, t

′
2, z, z

′, a′, IsEq)

37

Algorithm 13 Verification for 12
Input: an ElGamal public key (G, g, q, y), a pair of ciphertexts (a1, b1), (a2, b2), com-
mitments d′, e′, t1, t2, t′1, t

′
2 ∈ G, responses z, z′ ∈ Zq, a decryption factor a′ ∈ G, and a

bit IsEq
Output: either accept or reject

1: m← e′/a′

2: c← Hash(G, g, q, y, d, e, d′, e′, a1, b2, a2, b2, a
′, IsEq, t1, t2, t

′
1, t

′
2)

3: if dz = t1 · d′c and ez = t2 · e′c, d′z
′
= t1 · a′c and gz

′
= t2y

c and not d′ = e′ = 1
then

4: if IsEq = 1 and m = 1 or IsEq = 0 and m ̸= 1 then
5: return accept
6: else
7: return reject

8: else
9: return reject

3.7 Wikström’s shuffle proof

The last (and most complex) zero-knowledge proof we will examine is a shuffle proof.

Given our ElGamal group G of order q, the idea will be to take a vector of n ciphertexts

C ∈ (G × G)n, permute them, and re-randomise the resulting ciphertexts to form

Ĉ ∈ (G×G)n, proving that the permutation and re-randomisations were done honestly

(without e.g. deleting or duplicating ciphertexts from C). This will be tremendously

useful for tallying received votes while ensuring voter privacy.

One simple approach would be to choose two permutations π, ρ, with the resulting

list Ĉ = π(C) (re-randomised with a vector r). The prover also publishes ρ(C) (re-

randomised with a vector r′. The verifier randomly asks the prover to reveal either (ρ, r′

or (π ◦ ρ−1], r − r′). Since the prover must be honest about either ρ or π ◦ ρ−1 and

they do not know which will be asked about in advance, this gives us a 50% chance

of detecting a cheating prover. The proof can then be iterated several times to get

a negligible probability of failure. However, this approach is very computationally

inefficient; for this reason, it is rarely used in practice.

The shuffle we used in our protocol is due to Wikström [41], and is based on the

presentation in [38] (with an extension to a vector of n vectors of k ciphertexts, C ∈

(G×G)nk). Consider a permutation π ∈ Sn. Applying π to the rows of the n×n identity

matrix gives a permutation matrix Bπ. Note that a matrix B = (bij) is a permutation

38

matrix if and only if

1. for all i,
∑n

j=1 bij = 1 (that is, the entries of each row sum to 1)

2. for all vectors of independent variables (x1, . . . , xn),

n∏
i=1

n∑
j=1

bijxi =
n∏

i=1

xi

(that is, each row has exactly 1 nonzero entry)

We will construct a commitment to such a matrix and zero-knowledge proofs of these

facts, which will suffice to demonstrate correct shuffling. Our commitment scheme will

use independent generators g, h, h1, . . . , hn. For the matrix commitment, we create a

vector of commitments to columns of Bπ = (bij):

Commit(bj, rj) = grj
n∏

i=1

h
bij
i = grjhi

where the last equality follows from fact 2 above. For the vector of randomness r =

(r1, . . . , rn) we can declare the commitment to be

Commit(π, r) = (Commit(b1, r1), . . . ,Commit(bn, rn))

We now construct the zero-knowledge argument that (bij) is correctly formed. Given

a commitment c = Commit(π, r), we will prove the two facts above for Bπ. (Unless

otherwise specified, sums and products will run from 1 to n.) Setting ρ =
∑

i ri yields

via fact 1

∏
j

cj =
∏
j

(
grj
∏
i

h
bij
i

)

= g
∑

j rj
∏
i

h
∑

j bij
i

= gρ
∏
i

hi (1)

39

For arbitrary challenge values u = (u1, . . . , un) ∈ Zn
q and permuted challenges

u′ = (u′
1, . . . , u

′
n) ∈ Zn

q where u′
i =

∑
j biju

′
j = uπ(i), set ρ̃ =

∑
j rjuj . Then fact 2

yields

∏
i

ui =
∏
i

u′
i (2)

and

∏
j

c
u′
j

j =
∏
j

(
grj
∏
i

h
bij
i

)

= g
∑

j rjuj

∏
i

h
∑

j bijuj

i

= gρ̃
∏
i

h
u′
i

i (3)

Using the Fiat-Shamir transformation to construct challenge elements

ui = Hash(C, Ĉ, c, i) and permuted elements u′
i = π(ui), we can check Equations 1, 2,

and 3 above to prove that c is a commitment to a permutation matrix. It remains to prove

that every row of the output ciphertexts Ĉπ(j) is a re-encryption of the corresponding

row of the input ciphertexts Cj = (cj1, . . . , cjk).

Fix a column i. Let r′i = (r′1i, . . . , r
′
ni) be the re-randomisation factors for this col-

umn, and set ρ′i =
∑

j r
′
ji. We will use the homomorphic property of the re-encryption

procedure:

∏
j

Ĉ
u′
j

ji =
∏
j

ReEnc(Cji, r
′
ji)

uj

=
∏
j

ReEnc(Cji, r
′
jiuj)

= ReEnc

(∏
j

C
uj

ji ,
∑
j

r′jiuj

)

= Encρ′i(1)
∏
j

C
uj

ji (4)

40

Finally, we replace Equation 2 with a form using chained commitments that will allow

us to construct a preimage proof. Set the root of the chain to be ĉ0 = h, and choose a

list of random values ρ̂ = (r̂1, . . . , r̂n) = Zn
q . Define the ith commitment to be

ĉi = gr̂i ĉ
u′
i

i−1

Then

1. ĉ1 = gr̂1hu′
1

2. ĉ2 = gr̂2 ĉ
u′
2

1 = gr̂2gr̂1u
′
2hu′

1u
′
2

3. ĉ3 = gr̂3 ĉ
u′
3

2 = gr̂3gr̂2u
′
3gr̂1u

′
2u

′
3hu′

1u
′
2u

′
3

. . .

4. ĉn =
∏

i g
r̂i

∏n
j=i+1 u

′
jhu′

i

or in other words, ĉn = gρ̂hu with generators g, h, where u =
∏

i ui =
∏

i u
′
i and

ρ̂ =
∑
i

r̂i

n∏
j=i+1

u′
j

This permits an optimisation where
∏n

j=i+1 u
′
j is generated incrementally by looping

backwards (from n to i+ 1), allowing ρ̂ to be computed in linear time.

To summarise, using

• the permutation commitment c = (c1, . . . , cn)

• the commitment chain ĉ0, ĉ1, . . . , ĉn

• challenges u = (u1, . . . , un), u′ = (u′
1, . . . , u

′
n) and u =

∏
i ui

• the randomisation factors ρ, ρ̃, ρ′i, ρ̂

the proof is composed of four facts:

1.
∏

i ci = gρ
∏

i hi

2. ĉn = gρ̂hu and for each i ∈ {1, . . . , n}, ĉi = gr̂i ĉ
u′
i

i−1

41

3.
∏

i c
u′
i

i = gρ̃
∏

i h
u′
i

i

4. for each column i ∈ {1, . . . , k},
∏

j Ĉ
u′
j

ji = Encρ′i(1)
∏

j C
uj

ji

3.7.1 Preimage proof of shuffle

We now construct a group homomorphism encoding these facts by moving private input

to the left-hand side and public input to the right-hand side. Note that one of u and

u′ needs to remain private to prevent easy identification of the permutation—this is

the purpose of the chained commitment construction used to replace Equation 2. We

choose u′ as the private input.

1. gρ =
∏

i cih
−1
i

2. gρ̂ = ĉnh
−u and for each i ∈ {1, . . . , n}, gr̂i ĉu

′
i

i−1 = ĉi

3. gρ̃ =
∏

i c
u′
i

i h
−u′

i
i

4. for each column i ∈ {1, . . . , k}, Enc−ρ′i
(1)
∏

j Ĉ
u′
j

ji =
∏

j C
uj

ji

By the homomorphic property of encryption, we arrive at a group homomorphism

ϕ : Zq × Zq × Zn
q × Zn

q × Zq × Zk
q → G×G×Gn ×G× (G×G)k

which maps
(
ρ, ρ̂, r̂,u′, ρ̃, ρ′

)
to

(
gρ, gρ̂, ⟨gr̂1 ĉu

′
1

0 , . . . , gr̂n ĉ
u′
n

n−1⟩, gρ̃,

〈
Enc−ρ′1

(1)
∏
j

Ĉ
u′
j

j1 , . . . ,Enc−ρ′k
(1)
∏
j

Ĉ
u′
j

jk

〉)

This allows us to construct a Σ-protocol using the process in Section 3.5 with

• public input (G, g, q, y), Cij, Ĉij, c, and ĉ

• witness space X = Zq × Zq × Zn
q × Zn

q × Zq × Zk
q

• statement space Y = G×G×Gn ×G× (G×G)k

The formal proof and verification algorithms are omitted; for a full description, see [38].

42

4 The protocol

4.1 Overview

At a high level, the protocol pairs each vote with a MAC that prevents tampering. Each

vote is paired with secret numbers that uniquely determine a given vote’s MAC. The

voter commits to these secrets, and the electoral commission (EC) commits to an en-

crypted vote and its MAC. The voter sends the encrypted secrets along with their vote

to the EC via mail, allowing the EC to check the commitments and match the votes to

their MAC. Verifiable shuffles destroy the link between votes and voter IDs (as long as

a threshold of trustees do not collude to decrypt ciphertexts).

Recall that we assume either the voter’s device or EC are honest.

Notation We will use the following notation when describing the protocol:

• Commit(x, r): a Pedersen commitment to x with blinding factor r (see Algo-

rithm 1)

• {m}pk: an ElGamal encryption of m with public key pk (see Definition 4)

• {gm}pk an exponential ElGamal encryption of m with public key pk

• PrfKnow({m}pk): a universally-verifiable proof of plaintext knowledge for the

encryption {m}pk (see Algorithm 6)

• PrfEnc(m, {m}pk}): a universally-verifiable proof that {m}pk is an ElGamal en-

cryption of m with public key pk (e.g. by revealing the randomness used)

4.2 Setup

Before any voter can cast a vote, we must establish some public parameters. Choose

n electoral trustees. Generate ElGamal parameters as discussed in Section 3.2: G =

(G, g, q) with public key pk and secret key sk shared among the trustees such that any k

of them can decrypt a given ciphertext (that is, k-out-of-n secret sharing)5. To maintain
5Recall that we ask that G be any cyclic group with a generator g of order q. In other texts, you may

see an additional parameter p; this corresponds to G being the group of quadratic residues mod p.

43

voter privacy, we will thus assume that at least n−k+1 trustees are honest so that no k

of them may collude to decrypt ciphertexts they are not supposed to. The trustees should

be chosen such that all voters trust at least some of them; good candidates include the

EC and the parties running for election. Ideally, the trustees would not have an incentive

to collude in breaking privacy.

We also generate public parameters P = (G,H, P) of a Pedersen commitment

scheme (see Section 3.3) generated such that nobody knows dlogGH , e.g. by choosing

elements according to a hash function.

We will use zero-knowledge proofs defined with respect to G, and the Pedersen

commitments are defined with respect to P . For brevity, we will leave out explicit

reference to these parameters in the below discussion.

We use a web bulletin board (WBB), a public broadcast channel with memory.

Items cannot be removed from the WBB once they are published, and every partici-

pant’s view of the WBB after the protocol finishes is identical [42, 43]. Practically, this

means the voter needs to have access to the WBB using a channel independent from the

client device, to confirm they have not been misled. Close analysis and implementation

of the WBB is outside the scope of this thesis.

Each voter should be assigned a unique VoterID ensuring that

1. each voter can recognise their VoterID ; and

2. no two voters have the same VoterID .

The second assumption is needed to prevent clash attacks [44], where two voters are

persuaded that the same entry on the WBB is theirs. In practice, a VoterID might be a

short sequence of digits or similar—the important point is that it is easy for a human to

verify and hard for others to guess. It could make sense for the VoterID to be a hash

of the voter’s name and address, but because the protocol does not provide everlasting

privacy [45] it would be a privacy risk to use an identifier that would be recognisable in

the distant future.

44

4.3 Casting a ballot

For the voter, the protocol is straightforward—this is one of its key strengths. To cast a

ballot, the voter’s device generates four secrets a, b, ra, rb ∈ Zq and publishes commit-

ments to them on the WBB:

(
VoterID , Commit(a; ra), Commit(b; rb)

)
To create the ballot, the voter enters their vote on the device, which is encoded as

an integer Vote; for example, an index representing a selected candidate. The device

calculates MAC = a · Vote + b mod q, and sends the encrypted vote and MAC to the

EC (e.g. via the Internet):6

(
VoterID , {gVote}pk, {gMAC}pk,PrfKnow({gVote}pk,PrfKnow({gMAC}pk

)
Note that the vote and MAC are encoded in the exponent; this will be important for

reconstructing the MAC using the additively homomorphic property later.

The EC checks the proofs to ensure the device did not simply send random values

or repost existing values, re-randomises the encryptions, and posts the result (without

the proofs of knowledge) to the WBB, effectively committing to an encrypted vote and

its corresponding encrypted MAC. Once the device verifies its ID has an encrypted vote

and MAC on the WBB, it produces a printed ballot:

Paper 1 = (Vote, {a, b, ra, rb}pk,PrfKnow({a, b, ra, rb}pk))

and a verification slip:

Paper 2 = (VoterID , {VoterID}pk,PrfEnc(VoterID , {VoterID}pk))

The purpose of Paper 2 is to prove to the EC that the VoterID on the ballot is that

of the correct voter without allowing a worker who performs this check to see the vote

6We assume for ease of exposition that this Internet connection is untappable. In practice, this is not
really the case, and defences against this are an open question.

45

(thereby breaking privacy). This process is described in more detail in Algorithm 15

(Cast).

After doing this, the voter can simply mail their paper ballot and its verification slip

to the EC, providing whatever identification details are usual in their jurisdiction (e.g.

writing their name and address on the envelope). Examples of the ballot and verification

slip from the pilot implementation are reproduced as Figures 1 and 2 below.

To prevent undetected fraud, the voter must check that Paper 1 contains a correct

human-readable printout of her vote, and Paper 2 contains a correct human-readable

printout of her VoterID . If she wants to check that her vote has been included in the

final count, she needs to visit the WBB after the election to check that her VoterID is

in the list of included IDs. Note that she does not have to do anything to verify that

the QR codes on her printouts are not maliciously generated—this will be detected by

subsequent verification (assuming the attacker model described in the overview).

Examples of what Paper 1 and Paper 2 look like in our prototype implementation

are provided in Figures 1 and 2.

4.4 Tallying ballots

Once the ballot casting period has ended, the EC can begin receiving ballots. The

VoterID received by the EC is referred to as RecVoterID . First, the EC checks the

proof on Paper 2. If it fails, they should add it to a list of rejected VoterIDs; the same

applies for all cryptographic proofs checked by the EC. They should also confirm that

RecVoterID matches the identification on the outside of the envelope. If it does, they

should attach the encryption {RecVoterID}pk to Paper 1 (without opening it)7, and

destroy the rest of Paper 2. The set of Paper 1s from all ballots should now be shuffled

physically, to preserve privacy.

7This could be done by e.g. tearing the encryption of Paper2 off and stapling it to Paper1, or even
by providing {RecVoterID}pk on a third piece of paper.

46

Paper 1 -- Vote: 	Alice: 2 	Bob: 3 	Eve: 1

Encryptions:

Proofs:

Figure 1: Paper 1: The voter only needs to check the plaintext vote at the top. This
example illustrates a preferential vote: Eve first, Alice next and Bob last.

Paper 2 -- VoterID: 3f504fd3ff

Figure 2: Paper 2: The voter only needs to check the plaintext VoterID .

47

After shuffling, the EC receives Paper 1 as:

Paper 1 =
(
ReceivedV ote, {RecVoterID}pk, {a, b, ra, rb}pk,

PrfKnow({a, b, ra, rb}pk, PrfEnc(RecVoterID , {RecVoterID}pk)
)

The EC should check the proofs, and if they are valid, post the re-randomised received

ballot to the WBB. The prior steps should be performed under scrutiny from e.g. party

representatives to ensure they are faithfully posted; this is the only step that needs active

scrutineering.

The trustees next perform a cryptographic mix to produce a list of ballots of the

form: (
{gReceivedV ote}pk, RecVoterID , (a, b, ra, rb)

)
on the WBB. The resulting list should be joined to the commitments on the WBB

by matching ReceivedV oterID to VoterID , producing a list of tuples:

(
{gReceivedV ote}pk, VoterID , (a, b, ra, rb),Commit(a; ra),Commit(b; rb)

)
Note that we again encrypt gReceivedV ote in the exponent to use the additively homo-

morphic property later.

If there are multiple tuples for some VoterID , for each tuple the pair of commit-

ments Commit(a; ra), Commit(b; rb) should be checked. If the parameters a, b, ra, rb

are correct openings for exactly one tuple, only that tuple should be accepted; in any

other case, no tuples for VoterID should be accepted.

The accepted tuples should then be matched with the EC’s committed encryptions

to produce a list of tuples:

(
{gVote}pk, {gMAC}pk, {gReceivedV ote}pk, VoterID , a, {gb}pk,PrfEnc(gb, {gb}pk)

)
For all accepted tuples, the electoral trustees should perform a plaintext equivalence

test on the WBB to show whether ReceivedV ote = Vote (without decrypting either).

48

If this succeeds, the EC uses the homomorphic properties of ElGamal8 to construct a

second MAC from the received vote:

{gMAC ′}pk = a · {gReceivedV ote}pk · {gb}pk

where a ·{gReceivedV ote}pk =
∏a

i=1{gReceivedV ote}pk. This is posted to the WBB with

the VoterID and the committed vote-MAC pair:

(
VoterID , {gVote}pk, {gMAC}pk, {gMAC ′}pk

)
The electoral trustees perform another plaintext equivalence test on the WBB to

show that MAC = MAC ′ (mod q). For all tuples that pass this test, the electoral

trustees should decrypt {gVote}pk to produce a final list of valid votes, using the fact

that there are only a small number of possible votes to calculate the discrete logarithm.

(We assume that once the final list is public, someone counts the votes correctly.)

Note that anybody can check whether a given VoterID produced a valid vote by

seeing whether a tuple
(
VoterID , {gVote}pk, {gMAC}pk, {gMAC ′}pk

)
passed the final

plaintext equivalence test, providing individual verifiability. It is easy to modify the

protocol to remove this property, instead providing group verifiability; this may be de-

sirable depending on the application. This alteration and other possible extensions are

discussed in Section 5.4.

4.5 The algorithms
We present a formal description of the procedures that define the protocol for refer-
ence below: Setup (Algorithm 14), Cast (Algorithm 15), and Tally (Algorithm 16).
Throughout, the ith entry in category cat to the WBB is written Bcat

i . The set of entries
in category cat is written Bcat.

8This does not require the secret key, so it can be easily verified by any party.

49

Algorithm 14 Setup(λ): System setup protocol
1: ▷ The following are posted to the WBB:
2: ⟨VoterID⟩: a list of IDs of eligible voters. We assume that these are assigned

one-on-one to each voter.
3: G = (g, q): the public parameters of an exponential ElGamal encryption scheme.

(This is additively homomorphic mod q if the message is in the exponent, where q
is the order of g in the group G.)

4: pk: an ElGamal public key generated jointly among the trustees with parameters
G and security parameter λ. (The corresponding secret key sk is shared among the
set of electoral trustees T .)

5: P = (G,H, P): the public parameters of a perfectly-hiding Pedersen commitment
scheme generated such that nobody knows dlogGH .

Algorithm 15 Cast: Vote generation and casting protocol

1: Device: a, b, ra, rb ←R {1, . . . , q − 1}
2: Device: ca ← Commit(a; ra), cb ← Commit(b; rb)
3: Device→WBB : Bident

i = (VoterID , ca, cb)
4: V oter → Device: Vote
5: Device: MAC ← a · V ote+ b mod q
6: Device→ EC: VoterID , {gMAC}pk, {gVote}pk,PrfKnow({gMAC}pk),PrfKnow({gVote}pk)
7: EC →WBB : Bcommit

i = (VoterID ,Rerand{gMAC}pk,Rerand{gVote}pk)
8: Device: Wait for VoterID to appear on WBB
9: Device→ Paper 1: Vote, {a, b, ra, rb}pk,PrfKnow({a, b, ra, rb}pk)

10: Device→ Paper 2: VoterID , {VoterID}pk,PrfEnc(VoterID , {VoterID}pk)
11: V oter → EC: Paper 1,Paper 2 (by paper mail)

50

Algorithm 16 Tally: Vote receiving and tallying protocol

1: for ith ballot (Paper 1,Paper 2) received via paper mail do
2: Paper 2 → EC : RecVoterID , {RecVoterID}pk,PrfEnc(RecVoterID , {RecVoterID}pk)
3: EC: Checks RecVoterID matches electoral roll
4: EC: Verifies PrfEnc(RecVoterID , {RecVoterID}pk).

On failure, post RecVoterID to Brejected. Skip ballot.
5: Paper 2 → Paper 1 : {RecVoterID ′}pk
6: Destroy Paper 2, Shuffle Paper 1 ↓
7: Paper 1 → EC : ReceivedVote, {RecVoterID}pk, {a, b, ra, rb}pk,PrfKnow({a, b, ra, rb}pk)
8: EC: Verifies PrfKnow({a, b, ra, rb}pk).

On failure, post RecVoterID to Brejected. Skip ballot.
9: EC→WBB : Bvotes

i = (ReceivedVote,Rerand{RecVoterID}pk,Rerand{a, b, ra, rb}pk)

10: T →WBB : Bvotes’ = Mix(Bvotes)
11: for Bvotes’

i = ({gReceivedVote}pk, {RecVoterID}pk, {a, b, ra, rb}pk) do
12: T : (a, b, ra, rb) = Dec({a, b, ra, rb}pk)
13: T : RecVoterID = Dec({RecVoterID}pk)
14: T →WBB : Bmixed

i = ({gReceivedVote}pk, (a, b, ra, rb),RecVoterID , decryption proof)

15: ▷ Join by matching VoterID to RecVoterID
16: for Bmixed

i such that RecVoterID is unique do
17: ▷ For this uniqueness test, also include ballots in Brejected

18: for Bident
j = (VoterID , ca, cb) such that VoterID = RecVoterID do

19: if ca = Commit(a; ra) and cb = Commit(a; rb) then
20: mark Bident

j as a correct commitment opening for Bmixed
i

21: if exactly one Bident
j is a correct opening for Bmixed

i then
22: WBB → T : Bcommit

k = (VoterID , {gVote}pk, {gMAC}pk)
If there is no Bcommit

k with matching VoterID , proceed to the next itera-
tion.

23: T →WBB : PlaintextEquivalent
(
{gReceivedVote}pk, {gVote}pk

)
24: {gMAC ′}pk := a · {gVote}pk + {gb}pk
25: T →WBB : PlaintextEquivalent

(
{gMAC}pk, {gMAC ′}pk

)
26: if plaintext equivalence proofs pass then
27: T →WBB : Baccepted

i =
(
VoterID , {gVote}pk

)
28: T →WBB : Baccepted′ = Mix(Baccepted)
29: ▷ Produce final tally
30: for Baccepted’

i = {gVote}pk on WBB do
31: T →WBB : Btally

i = Dec({gVote}pk)

51

4.6 Verification procedure

Verification is broken into three main areas. Firstly, each voter must check the paper
printout herself to make sure it correctly reflects her vote, and she must also check
whether her ID appears in the final mix. Secondly, scrutineers from third parties must
observe the process of receiving paper ballots. Finally, the WBB transcript can in the-
ory be verified by anyone; because this may not be a trivial computational task, we
expect that trusted entities such as media organisations would perform verification of
this transcript on voters’ behalf.

One of the great challenges in paper elections is chain-of-custody: once a paper
ballot is filled out by a voter, it should never leave the sight of a trusted authority.
Traditional postal voting breaks this requirement, as postal channels are demonstrably
vulnerable to interception [46]. To address this issue, our protocol defines a weaker
trust model than the traditional chain of custody. The protocol is verifiable as long as at
least one of the below is honest:

• the client’s device

• the postal channel and the electoral commission

Thus an adversary can undetectably cheat in the election if they control both the device
and the postal channel (and/or the electoral commission), but cannot win if they control
only one. This strikes a reasonable compromise, since if the EC (or postal service)
deliberately compromises voters’ devices, this is indicative of systemic corruption that
no cryptographic verification scheme can address.

By election scrutineers. Scrutineers present when the received envelopes are opened
must check:

1. that the received VoterID matches the entry on the electoral roll;

2. that the proof of encryption on Paper 2 is correct;

3. that the encryption on Paper 2 was correctly attached to Paper 1; and

4. that the vote posted on the WBB matches the vote on Paper 1.

This procedure mirrors that already in widespread use for traditional postal votes, and
can be easily carried out with a quick visual inspection, perhaps using a mobile app to
check the proof of encryption.

52

By the voter. Before sending their vote by mail, the voter must check that the printed
vote matches the vote they intend to cast, and that the printed VoterID is theirs.9 If they
do not perform these checks, their vote can be undetectably substituted for another.

Once the receiving and tallying process is complete, the voter should check that
their VoterID appears in the accepted list Baccepted on the WBB, and either carry out
the full WBB verification themselves (Algorithm 18) or check that a trusted organisation
has done it for them. If the voter does not perform these check, the election integrity
can still be assured by others; however, the voter themselves will have no certainty.

A full description of the voter’s verification procedure appears in VoterVerify (Algo-
rithm 17) below. We also provide GlobalVerify (Algorithm 18) describing the full set of
verifications to perform on the WBB records. Note that the voter verification algorithm
is defined independently of the global verification algorithm, to simplify modelling.

Algorithm 17 VoterVerify: Protocol for verification by the voter
1: Check that the vote on Paper 1 matches the intended vote
2: Check that the VoterID on Paper 2 is correct
3: ▷ Once the election is complete
4: Check that the voter’s VoterID appears in some row of Baccepted

5: if the above checks succeed then
6: return accept
7: else
8: return reject

4.7 Interpreting the outcome

After the protocol is carried out and verified, we have two separate vote records: one
from the paper ballots, and the other from Btally. Interpreting the results correctly is not
entirely straightforward; in this section we discuss how to correctly interpret the results
in light of the fact that there may have been attempts to manipulate the process.

At the end of the election, the WBB contains four sets of VoterIDs:

1. Lregistered: a list of registered VoterIDs drawn from Bident, i.e. those who have
uploaded a VoterID and commitments

2. Lreceived: a list of received VoterIDs drawn from Bvotes, i.e. those whose ballots
were posted by the EC in Step 9 of Tally

9It should be overwhelmingly unlikely that two VoterIDs can be almost but not quite the same, e.g.
by using a hash function indistinguishable from uniform randomness.

53

Algorithm 18 GlobalVerify: Global verification protocol for the WBB

1: Verify the mix proof for Bvotes′ in Step 10 of Tally
2: Verify the decryption proofs in Steps 12 and 13 of Tally
3: Verify all PET proofs in Steps 23 and 25 of Tally
4: Verify the mix proof for Baccepted′ in Step 10 of Tally
5: Verify the decryption proofs in Step 31 of Tally
6: for each row Baccepted

i = (VoterID , {gVote}pk) do
7: Verify that VoterID is unique in Bmixed and does not appear in Brejected

8: Verify that exactly one commitment Bident
j = (VoterID , ca, cb) has a correct

opening in Bmixed such that VoterID = RecVoterID
9: Verify that the PETs in Steps 23 and 25 of Tally pass

10: if the above checks succeed then
11: return accept
12: else
13: return reject

3. Lrejected: a list of rejected VoterIDs drawn from Brejected, i.e. those whose ballots
arrived with invalid proofs

4. Laccepted: a list of accepted VoterIDs drawn from Btally, i.e. those whose ballots
uniquely and exactly matched a registered VoterID’s commitments

Clearly if Laccepted is not a subset of Lregistered ∪ Lrejected, then something has gone
badly wrong and verification should fail. However, in the normal course of an election
we expect some deviation between these sets: some voters may register but never vote,
some votes may go missing in the mail, and some votes may be recorded incorrectly on
arrival. We would like to define an “acceptable” election outcome in such a way that
we detect fraud but do not cause the election to fail in the case of small deviations.

First, the votes from the VoterIDs in Laccepted are those for which everything worked
perfectly, and should be accepted. If they deviate from the paper record, this indicates
one type of problem: substitution of paper ballots in the mail (or by the EC after arrival).
Another type of problem is that of voters who registered but do not have a unique
matching commitment at Step 21 of Tally, or did not pass PETs in Steps 23 or 25
of Tally. Depending on the specific nature of the problem, this could be evidence of
attempted fraud (e.g. multiple commitment openings could indicate the voter’s device
has been compromised), or it could be a legitimate decision to register but not vote.

In summary, Laccepted provides an arguable election outcome, while the other lists
provide some indication of the amount of error or manipulation attempts. We will
call the amount of detected error ε = |Lregistered ∪ Lreceived| − |Laccepted|, and call the
accepted error δ. Let O be the outcome of the election with margin M according to

54

the paper record. For example, in a simple first-past-the-post election O would be a
vector of vote counts for each candidate and M would be the difference in the number
of accepted votes for the top two candidates. Finally, given a WBB transcript τ define
the acceptable number of errors to be d.

One obvious formula would be: accept the outcome O if the plaintext ballots give
the same winner as Laccepted, i.e. δ = M . Another would be: accept O if the demon-
strated error was below the margin, ignoring those voters who registered but for whom
a vote was not received, i.e. δ = M + |Lregistered| − |Lreceived|.

We abstract these choices away by defining the result of the transcript τ given the
outcome O and the accepted error δ to be

Result(τ) =

O if ε < δ and GlobalVerify(τ) passes

⊥ otherwise

where ⊥ indicates an erroneous outcome. To be confident that there were at most
δ detected errors, at least θ = |V| − (M − δ) voters must correctly verify their votes
(where V is the set of voters). Thus there is an inverse relationship between the allowed
deviation and the number of voters that are allowed to not perform verification.

55

5 Properties of the protocol

5.1 Privacy

Any practical voting scheme needs to guarantee the privacy of its voters. To be more
precise, it should not be possible for anybody to determine which vote was cast by a
particular voter except the voter themselves. Postal voting demands that voters’ identi-
ties be verified on receipt of the vote; this means that the electoral commission could in
principle break a voter’s privacy. However, real-world postal voting systems have steps
in place to preserve voters’ privacy. For example, in Australian elections voters’ identi-
ties are checked by having the voter write their name and address on the envelope, and
fold their ballot before placing it inside. In this way, the voter’s identity can be verified,
then the envelope can be opened and the still-folded ballot can be passed to somebody
who did not learn the voter’s identity. Our protocol involves a similar procedure. Pri-
vacy is distinct from receipt freeness, which demands that a voter not be able to prove
which vote they cast to anybody else.

Our definition of privacy is based on that of [47], though we separate voter privacy
from receipt freeness because we can prove privacy against a stronger adversary than
for receipt freeness. For privacy, we will remove the simulator defined by [47]—the
purpose of the simulator is to allow a voter to lie about their vote, which is not relevant
in the privacy-only case.

Voter privacy is defined as a game between a PPT adversary A and a challenger
C. We consider a set of m candidates P = {P1, . . . , Pm}, a set of n voters V =

{V1, . . . , Vn}, a set of allowed candidate selections U , and an election evaluation func-

tion f : Un → Nm mapping the voters’ candidate selections to a vector where the ith
index contains the number of votes for candidate Pi (or perhaps a vector of preference
numbers for preferential systems). The intuition is that the adversary chooses the pa-
rameters for the election and may choose to corrupt a number of voters of its choice,
meaning that it acts as the voter. The challenger acts as the EC, WBB, and election
trustees, and acts on behalf of honest voters; for each non-corrupted voter, the adver-
sary provides the challenger with two votes to choose from. The adversary wins if it is
able to guess which of the two votes the non-corrupted voters cast and the adversary
did not choose the parameters such that it always wins.

Definition 17 (Voter privacy). Consider the below game between an adversary A
and a challenger C, written GA

Privacy(1
λ, n,m).

56

1. Given parameters 1λ, n,m, the adversary A chooses a set of candidates P =

{P1, . . . , Pm}, voters V = {V1, . . . , Vn}, and candidate selections U . It sends
the sets P ,V , and U to C.

2. C flips a coin b ∈ {0, 1}, and runs Setup(λ) to obtain parameters for ElGamal
encryption and Pedersen commitments. It sends the public parameters to A.

3. A schedules the Cast protocol for all voters, which are allowed to run con-
currently. For all Vl ∈ V , the adversary chooses whether Vl is to be corrupt.
C acts as the EC.

• If Vl is corrupt, A acts on Vl’s behalf as it wishes.

• If Vl is honest, A sends two candidate selections U0
l ,U1

l ∈ U to C. It
must do so such that f(⟨U0

l ⟩Vl∈Ṽ) = f(⟨U1
l)Vl∈Ṽ⟩ where Ṽ is the set of

honest voters (that is, the set of honest votes alone does not leak b). C
acts on Vl’s behalf to cast the vote U b

l . During this process A may view
the encrypted data {gVote}pk , {gMAC}pk in transit to the EC, as well as
the WBB and Paper 1,Paper 2 (after shuffling).

We require that the relationship between Paper 1 and Paper 2 defined by
the shared encryption {VoterID}pk is forgotten. After Cast terminates,
C provides to A the receipt consisting of the VoterID for Vl (and thus
the data on the WBB indexed by the VoterID).

4. C runs the Tally protocol, acting as the EC, the trustee set T , and the WBB.
A may continue to observe the WBB.

5. A outputs a bit b∗.

A wins the game if and only if b = b∗. A scheme achieves voter privacy if for all
PPT adversaries A, Adv

(
GA

Privacy(1
λ, n,m)

)
= negl(λ).

This definition contains some very careful phrasing. Note first what the adversary
is allowed to learn: it can see anything on the WBB, anything on Paper 2 for all voters,
anything on Paper 1 for all voters (but not which Paper 2 corresponds to the Paper 1 for
honest voters), and any of the encrypted data sent to the EC (but not an honest voter’s
view of how it was constructed). This is more general than what we will allow for
receipt-freeness.

It is worth discussing some details in the condition placed on the adversary’s choice
of candidate selections in step 3. This prevents any attempt by the adversary to trivialise
the problem by forcing the election’s outcome alone to reveal b, and in particular pre-

57

vents the adversary choosing all but one voter to be corrupt—since the list of decrypted
votes on the WBB would reveal the cast vote. This is important since the protocol
reveals not only the winner of the election, but also a full list of all valid votes.

A proof that our scheme satisfies this property follows. The goal will be to sequen-
tially alter the privacy game, where each step is negligibly distinguishable from the
previous step so that the adversary does not notice the manipulations. We will arrive at
a game where none of the ciphertexts contain any information, so the adversary has no
hope of winning.

Theorem 11. Assume the EC and voter’s device are honest as well as a threshold

of electoral trustees. For all constants m ∈ N and n = poly(λ), the voting system

described in Section 4 satisfies voter privacy.

Proof. We first summarise some key facts. During Cast, the adversary sees:

• (VoterID , ca, cb)

• (VoterID , {gVote , gMAC}pk,PrfKnow({gVote , gMAC}pk))

• (VoterID ,Rerand({gMAC , gVote}))

During Tally, the adversary sees:

• (VoterID , {VoterID}pk, encryption proof)

• (Vote, {VoterID}pk, {a, b, ra, rb}pk,PrfKnow({a, b, ra, rb}pk))

• (ReceivedVote,Rerand({RecVoterID}pk),Rerand({a, b, ra, rb}pk))

• ({ReceivedVote}pk, (a, b, ra, rb),RecVoterID , decryption proofs)

• (Vote, decryption proof)

Crucially, the adversary cannot use {VoterID}pk in the above to link VoterID and
Vote since we require the relationship is forgotten by detaching the encryption from the
rest of Paper 2, attaching it to Paper 1, and shuffling before opening Paper 1.

We will use a hybrid argument to construct a sequence of games until we arrive at
one in which the adversary clearly cannot have any advantage.

Game G0: the unaltered game GA
Privacy(1

λ, n,m). By definition AdvG0,GA
Privacy(1

λ,n,m)(A) =
0.

58

Game G1: the same as Game G0, except the decryption and PETs on the WBB are
simulated using knowledge of their plaintexts rather than the decryption key;
this is possible since every ciphertext is either generated by the challenger, or
is generated by the adversary with an accompanying ZKP proving knowledge
(so the challenger can use the corresponding zero-knowledge extractor). The
soundness error in the adversary’s ZKPs gives AdvG1,G0(A) = negl(λ).

Game G2: the same as Game G1, except the ZKPs used to prove correctness of the
decryptions and PETs are simulated via the zero-knowledge simulator. The
ZKPs are non-malleable and the WBB filters for duplicates, so the adver-
sary’s proofs cannot depend on the simulated proofs—we are therefore still
able to use the extractor from Game G1. Note that the challenger no longer
uses the ElGamal secret key for any purpose. The simulator has no error, so
AdvG2,G1(A) = 0.

Game G3: the same as Game G2, except the mixing proofs are also simulated via
the zero-knowledge simulator to ensure no information about the permutation
or randomness used is leaked. As in G2, we have AdvG3,G2(A) = 0.

Game G4: the same as Game G3, except the ciphertexts are replaced with en-
cryptions of random values from an oracle (and re-randomisations are re-
placed with fresh encryptions of random values). No ciphertexts are ever de-
crypted, so we can use the IND-CPA property of ElGamal10 to guarantee that
AdvG4,G3(A) = negl(λ) (because the adversary cannot tell the ciphertexts
were replaced).

In Game G4, the encryptions are random and contain no usable information aside from
the (decoupled) VoterIDs and Votes. The link between VoterID and Vote is destroyed
by the mixing; assuming honesty of at least one mixing trustee and n−k+1 decrypting
trustees, the adversary cannot have any advantage in guessing which vote was cast by
each voter. Therefore, Adv(A, G3) = 0, which implies Adv

(
GA

Privacy(1
λ, n,m)

)
=

negl(λ) as required.

5.2 Receipt-freeness

The game we use for receipt-freeness will be similar to the privacy game, with two key
differences:

10If we did decrypt ciphertexts, the adversary could learn the decryptions of certain ciphertexts and
use this to undermine the IND-CPA property.

59

1. The adversary’s view is restricted to the WBB and the view of the voter’s client
(not the pieces of paper).

2. The voter has access to a simulator algorithm S that can simulate their client’s
view to support a claim that they submitted a different vote.

Consider a coercer who does not collude with the EC, but makes demands of the
voter and their client. We will prove passive receipt-freeness, meaning that we assume
the voter and client follow the protocol honestly aside from recording all of their secrets.
We must further assume the channel between the voter and EC is not tapped by the
coercer; this models a coercer who does not have the capacity to intercept encrypted
communications such as TLS over the Internet.11 (At least one untappable channel in
one direction is necessary and sufficient for receipt-freeness [48]. We use two, and do
not consider a cheating EC.)

The coercer demands the voter casts some vote Votecr and provides the coercer
with a transcript describing the setup, ballot generation, and ballot casting for Votecr.
The voter will evade coercion (to submit a different vote Vote) by telling the truth
about their secrets a, b, ra, rb but claiming to have sent a different MAC MAC cr =

a·Votecr+b mod q. This relies on the fact that the EC posts a re-randomised encryption
of the voter’s true MAC MAC = a · Vote + b mod q, which is indistinguishable from
a re-randomised encryption of MAC cr.

Our definition of receipt-freeness follows.

Definition 18 (Receipt-freeness). Consider the below game between an adversary
A and a challenger C, written GA,S

Rec-free(1
λ, n,m).

1. Given 1λ, n,m, A chooses a set of candidates P = {P1, . . . , Pm}, voters
V = {V1, . . . , Vn}, and candidate selections U . It sends the sets P ,V , and U
to C.

2. C tosses a coin b ∈ {0, 1}, and runs the Setup protocol to obtain parame-
ters for ElGamal encryption and Pedersen commitment. It sends the public
parameters to A.

3. A schedules the Cast protocol for all voters, which are allowed to run con-
currently. For all Vl ∈ V , the adversary chooses whether Vl is to be corrupt

or honest. C plays the role of the EC.

11TLS is not untappable: a voter could prove what they sent by revealing their AES key generated in
the TLS handshake.

60

• If Vl is corrupt, A acts on Vl’s behalf as it wishes.

• If Vl is honest, A sends two candidate selections U0
l ,U1

l ∈ U to C. It
must do so such that f(⟨U0

l ⟩Vl∈Ṽ) = f(⟨U1
l)Vl∈Ṽ⟩ where Ṽ is the set of

honest voters (that is, the set of honest votes alone does not leak b). C
acts on Vl’s behalf to cast the vote U b

l . During this process A may view
only the WBB. After Cast terminates, C provides to A:

(a) the receipt αl consisting of voter Vl’s VoterID

(b) if b = 0, Vl’s real view (including randomness for the encryptions)

a, b, ra, rb,Vote = U0
l ,MAC ,

{gVote}pk, {gMAC}pk, {a, b, ra, rb}pk, {VoterID}pk

If b = 1, C instead provides a simulated view using S .

4. C runs the Tally protocol, acting as the EC, the trustee set T , and the WBB.
A may continue to observe the WBB.

5. A outputs a bit b∗.

A wins the game if and only if b = b∗. A scheme achieves receipt freeness if there
exists a simulator S such that for all PPT adversaries A

Adv
(
A, GA,S

Rec-free(1
λ, n,m)

)
= negl(λ)

Theorem 12. Assume the adversary does not collude with the EC, and cannot tap the

channel between the voter and EC. For all constants m ∈ N and n = poly(λ), the

voting system described in Section 4 satisfies receipt freeness.

Proof. First, we recall the information visible to the adversary. During Cast, the adver-
sary sees

• (VoterID , ca, cb)

• (VoterID ,Rerand({gMAC}pk),Rerand({gVote}pk))

After Cast, the adversary sees the voter’s (possibly-simulated) view

a, b, ra, rb,Vote,MAC ,

{gVote}pk, {gMAC}pk, {a, b, ra, rb}pk, {VoterID}pk

During Tally, the adversary sees

61

• (ReceivedVote,Rerand({RecVoterID}pk),Rerand({a, b, ra, rb}pk))

• ({ReceivedVote}pk, (a, b, ra, rb),RecVoterID , decryption proofs)

• (Vote, decryption proof)

Now we define the simulator. S receives an honest voter’s view

a, b, ra, rb,Vote = U1
l ,MAC ,

{gVote}pk, {gMAC}pk, {a, b, ra, rb}pk, {VoterID}pk

It computes a valid MAC for the claimed vote U0
l as well as ciphertexts for the claimed

vote and MAC. It then outputs the simulated view

a, b, ra, rb,Votecr = U0
l ,MAC cr = a · Vote ′ + b,

{gVotecr}pk, {gMAC cr}pk, {a, b, ra, rb}pk, {VoterID}pk

We will use a hybrid argument to prove the result as per Theorem 11.

Game G0: The actual game GA,S
Rec-free(1

λ, n,m), where the challenger uses U b
l in the

Cast protocol and the above simulator is invoked when b = 1. (That is, voters
vote as they wish and run the coercion-resistance strategy.)

By definition AdvG0,G
A,S
Rec-free(1

λ,n,m)(A) = 0.

Game G1: The same as Game G0, except the decryption and PETs are simulated
with knowledge of the plaintext as in Theorem 11; AdvG1,G0(A) = negl(λ).

Game G2: The same as Game G1, except the proofs used to demonstrate correct de-
cryption and plaintext equivalence are simulated with their zero-knowledge
simulators as in Theorem 11. Note that as before we no longer use the ElGa-
mal secret key for any purpose. We then have AdvG2,G1(A) = 0.

Game G3: The same as Game G2, except the proof of correct mixing is simulated
as in Theorem 11. To ensure the link between successive ciphertexts is de-
stroyed, the challenger uses knowledge of the plaintext to replace ciphertexts
with fresh encryptions after each mix. We have AdvG3,G2(A) = 0.

Game G4: The same as Game G3, except when b = 1:

1. In Step 7 of Cast , the challenger posts an encryption of the claimed
MAC {gMAC cr}pk instead of a re-randomised encryption of the actual
MAC {gMAC}pk.

62

2. In Step 9 of Tally , the challenger changes the posted (re-randomised)
encryptions of RecVoterID and a, b, ra, rb so that they appear together
with the votes they claimed to have cast.

Tally can then proceed as usual; we have changed the votes and MACs con-
sistently so that they are still plaintext-equivalent. Since all we have done
is change encryptions for which the adversary does not know the random-
ness and the link between successive ciphertexts is destroyed, the IND-CPA
property of ElGamal yields AdvG4,G3(A) = negl(λ).

Game G5: The same as Game G4, except the challenger (acting as the honest voters)
ignores the value of b and always obeys the adversary. Since the adversary
does not see anything different to what it saw in Game G4, AdvG5,G4(A) = 0.

The adversary can have no advantage in Game G5 because the value of b is ignored.
Following the chain of games then yields

AdvG5,G
A,S
Rec-free(1

λ,n,m) = negl(λ)

as required.

5.3 Verifiability

Our definition of verifiability will again be based on that from [47].12 However, we
will consider the cases of a cheating EC and cheating voter client separately, since we
do not allow the adversary to control both simultaneously. We use a vote extractor

algorithm E (τ, ⟨αl⟩) which extracts the dishonest votes ⟨Ul⟩Vl∈V\Ṽ from the transcript
τ and honest voters’ receipts ⟨αl⟩13, possibly in super-polynomial time. In our protocol
there is no situation where the adversary casts an invalid vote—such attempts instead
contribute zero to the vote count. The extractor exists instead to capture the fact that we
do not immediately assume a well-behaved adversary.

We will also require that a threshold of honest voters θ successfully cast their vote.
Finally, we use the Manhattan metric d1(·, ·) to mean the absolute difference in the
number of votes for each candidate.

Note unlike the previous games, in this game the adversary controls the encryption
parameters.

12Note that in [47], the error parameter d represents the amount of undetected error, since their verifi-
cation is probabilistic. In our version, δ is the amount of detected error instead.

13Recall these are simply the VoterIDs.

63

5.3.1 With a cheating EC

When discussing verifiability, we will use the definitions from Section 4.7.

Definition 19 (EC Verifiability). Consider the below game between an adversary
A and a challenger C, written GA,E,δ,θ

EC-ver (1
λ,m, n).

1. Given 1λ, n,m, A chooses a set of candidates P = {P1, . . . , Pm}, voters
V = {V1, . . . , Vn}, and candidate selections U . A runs the Setup protocol
to obtain parameters for ElGamal encryption and Pedersen commitment. It
sends the public parameters (G, g, q) and the sets P ,V ,U to C.

2. A schedules the Cast protocol for all voters, which are allowed to run con-
currently. For all Vl ∈ V , A chooses whether Vl is to be corrupt or honest.

• If Vl is corrupt, A acts on Vl’s behalf as it wishes.

• If Vl is honest, A sends a candidate selection Ul ∈ U to C, which acts
on Vl’s behalf to cast the vote Ul.

3. C engages with A in the Cast protocol so that A acts as the EC and the
postal service *but not the WBB). For each voter Vl, C receives the receipt
αl = VoterID .

4. A posts the election transcript τ to the WBB.

Let Ṽ be the set of successfully-verifying honest voters. A wins the game if and
only if:

1. |{l ∈ [n] | VoterVerify(αl) = accept}| ≥ θ (i.e. at least θ honest voters
verified successfully);

2. Result(τ) ̸= ⊥; and

3. for the election evaluation function f :

d1(Result(τ), f(⟨U1, . . . ,Un⟩)) ≥ δ

where {Ul}Vl∈V\Ṽ ← E(τ, {αl}Vl∈Ṽ) (That is, the deviation from the true
result is larger than the accepted deviation δ.)

64

A scheme achieves EC verifiability if for all PPT adversaries A,

Pr
[
A wins GA,E,δ,θ

EC-ver

]
= negl(λ)

The proof will proceed by considering a simplified version of the protocol in which
there is only one trustee holding the decryption key (since we have already proved
privacy). The adversary can easily drop a vote whenever they want; we are interested
in the case where they accept a vote, but try to change what it says.

Theorem 13. For any constant m ∈ N and n = poly(λ), a specified result function

Result(τ) defining a threshold 0 ≤ δ < M for an election with margin M , and θ =

|V|−(M−δ), the simplified ZKP-based version of the protocol satisfies EC verifiability.

Proof. Intuitively, we will prove that if the corrupt EC successfully posts a valid MAC

for a claimed Vote then it must know the voter’s secrets a, b except with negligible
probability, so cannot defraud the election outcome without client collusion.

We begin by defining the vote extractor E . For each corrupt VoterID , it considers
the commitment pair posted by the voter’s device in Step 3 of of Cast (Algorithm 15),
and the encrypted vote-MAC pair posted by the EC in Step 7 of Cast. It inspects the
WBB transcript τ and outputs:

1. zero, if the VoterID has no matches in Step 15 of Tally (Algorithm 16) or no
correct opening is seen in Step 21 of Tally.

2. zero, if the VoterID has more than one such match and correct opening

3. zero, if there is a unique match and correct opening but either of the PETs and/or
associated proofs in Steps 23 and 25 of Tally are not successful

4. ReceivedVote otherwise

The first three cases correspond to a vote that was not submitted, or a verification
failure. Case 4 represents successful verification of a vote that made it into the tally. We
will argue that the adversary has a small probability of successfully (and undetectably)
substituting a vote with a different one in this case to produce a deviation larger than
the accepted error δ. If the adversary can forge any of the zero-knowledge proofs, they
have the ability to do this substitution; for example, a forged mix proof could allow the
output list to not match its input list, or a forged decryption proof could make a false
claim about an encrypted vote. The soundness properties for these proofs guarantee the
adversary has a negligible probability η1 of doing so successfully.

65

From here we assume the zero-knowledge proofs are true; that is, the statement
they assert is true, and there is some witness for each of these statements. Note that
the EC can influence the encryptions during the mix, so we require that the decryption
proofs are existentially sound (meaning they are sound even when the prover chooses
the ciphertext).

We will step backwards through the protocol. Each tallied vote in Step 31 of Tally

corresponds to:

1. a VoterID (via the mix and decryption proofs verified at Steps 4 and 5 of Tally)

2. secret parameters a, b (via the ID matching verified at Step 8 of Tally)

3. a received vote (via the mix and decryption proofs verified at Steps 1 and 2 of
Tally)

4. an encrypted MAC and vote from Step 7 of Cast posted before the adversary
knew a or b (via the PETs verified at Step 3 of Tally and the above mix and
decryption proofs)

Consider the commitments posted by the voter’s device in Step 3 of Cast. Recall
the adversary does not control the WBB, so cannot prevent the client from posting its
commitments. At Step 9, the EC chooses a particular vote and encrypted commitment
openings a, b, ra, rb to post alongside each VoterID . There are three possibilities for
the opening posted by the EC compared to the commitment posted by the client:

1. the opening matches the same voter’s commitment

2. the opening matches a different voter’s commitment

3. the opening matches no voter’s commitment

Case 1 is the successful case where the correct commitment is opened; the security
properties of Pedersen commitments guarantee this is a legitimate opening except with
negligible probability η2. Note that the EC cannot submit many openings and hope
that at least one is successful—the uniqueness check in Step 7 of GlobalVerify prevents
multiple attempted openings being accepted. Cases 2 and 3 will not pass verification,
since only openings with correct VoterIDs are accepted in Step 8 of GlobalVerify. Thus
commitment openings can be forged only with probability η2, and we will only consider
honest commitment openings for the remainder of the proof.

We now arrive at the key argument of the voting scheme. We will demonstrate that
even a computationally-unbounded adversary cannot cheat in these circumstances with

66

non-negligible probability. This adversary receives the genuine VoterID and cipher-
texts {gVote}pk, {gMAC}pk during Cast, which they can brute-force to produce plain-
texts Vote,MAC . They will post encryptions of different values Votecheat,MAC cheat

to the WBB in Step 7 of Cast. The PETs verified in Steps 3 and 9 (which we assumed
were truthful) ensure that

a · Votecheat + b = MAC cheat with Votecheat ̸= Vote

But the adversary also knows that a · Vote + b = MAC , and thus knows two points
on the line defined by a and b. The adversary has therefore extracted a and b from
the information it had received by Step 7 of Cast, which included only one point on
the line and two perfectly-hiding commitments to a and b. However, given a fixed pair
a, b ∈ {1, . . . , q − 1}, a vote, and a MAC there are q − 2 other pairs

a′ = a+ k, b′ = b− k · V ote for k ∈ {1, . . . , q − 1}

such that

a′ · Vote + b′ = MAC

Perfectly-hiding commitments leak no information; the adversary must therefore
have guessed a and b. Since a and b were chosen uniformly at random, the adversary
can do so with probability 1

q−1
.

We are left with three ways the adversary can succeed:

1. by forging ZKPs (with probability η1 = negl(λ))

2. by forging commitment openings (with probability η2 = negl(λ))

3. by forging MAC /Vote pairs (with probability 1
q−1

= negl(λ))

If the adversary does not forge any ZKPs, it must forge commitment openings or
MAC /Vote pairs for at least δ votes—but the probability of succeeding for even one
vote is negligible. All told, any PPT adversary must therefore have advantage at most

η1 + η2 +
1

q − 1
= negl(λ)

67

5.3.2 With a cheating client

Definition 20 (Client Verifiability). Consider the below game between an adversary
A and a challenger C, written GA,E,δ,θ

client (1λ,m, n).

1. Given 1λ, n,m, A chooses a set of candidates P = {P1, . . . , Pm}, voters
V = {V1, . . . , Vn}, and candidate selections U . A runs the Setup protocol
to obtain parameters for ElGamal encryption and Pedersen commitment. It
sends the public parameters and the sets P ,V ,U to C.

2. A schedules the Cast protocol for all voters, which are allowed to run con-
currently. For all Vl ∈ V , A chooses whether Vl is to be corrupt or honest.

• If Vl is corrupt, A acts on Vl’s behalf as it wishes.

• If Vl is honest, A sends a candidate selection Ul ∈ U to C, which acts
on Vl’s behalf to cast the vote Ul.

3. C engages with A in the Cast protocol so that A acts as the voting client.
The EC and postal system execute honestly. For each voter Vl, C receives the
receipt αl = VoterID .

4. The (honest) EC posts the election transcript τ to the WBB.

Let Ṽ be the set of successfully-verifying honest voters. A wins the game if and
only if:

1. |{l ∈ [n] | VoterVerify(αl) = accept}| ≥ θ (i.e. at least θ honest voters
verified successfully);

2. Result(τ) ̸= ⊥; and

3. for the election evaluation function f :

d1(Result(τ), f(⟨U1, . . . ,Un⟩)) ≥ δ

where {Ul}Vl∈V\Ṽ ← E(τ, {αl}Vl∈Ṽ) (That is, the deviation from the true
result is larger than the accepted deviation δ.)

A scheme achieves client verifiability if for all PPT adversaries A,

Pr
[
A wins GA,E,δ,θ

client

]
= negl(λ)

68

Theorem 14. For any constant m ∈ N and n = poly(λ), a specified result func-

tion Result(τ) defining a threshold 0 ≤ δ < M for an election with margin M , and

θ = |V| − (M − δ), the simplified ZKP-based version of the protocol satisfies client

verifiability.

Proof. For avoidance of doubt, we assume the threshold θ = |V| − (M − δ) of honest
voters verified their plain paper printout with their Vote and VoterID correctly; other-
wise, it is not possible to provide this verifiability. We will use the same vote extractor
E as defined for Theorem 13.

We define several tallies:

• δ1, the set of honest voters’ VoterIDs whose client printed verifying proofs of
untrue facts on either Paper 1 or Paper 2. By the existential soundness of the
ZKPs each proof can be successfully forged with negligible probability η1.

• δ2, the set of honest voters’ VoterIDs whose client printed non-verifying proofs
on either Paper 1 or Paper 2. These proofs are checked in Steps 4 and 8 of Tally

(Algorithm 16); since we assume an honest EC, the VoterIDs in question will
appear on the rejected list Brejected and the vote will not pass verification.

• δ3, the set of honest voters’ VoterIDs whose client printed encrypted secrets
{a, b, ra, rb}pk on Paper 1 that are not valid openings of the ca, cb commitments
posted in Step 3 of Cast (Algorithm 15).14 In this case, either there will be no
correct opening in Step 20 of Tally, or there will be multiple matching VoterIDs
in Step 21 of Tally. The vote will not pass verification due to the checks in Steps 7
and 8 of GlobalVerify (Algorithm 18).

• δ4, the set of honest voters’ VoterIDs in none of the above sets.

To count δ4, suppose the paper ballots are well-formed (otherwise we ignore those
ballots since they will be detected by an honest EC). By honesty of the postal service
and EC, and the fact that ZKPs of δ4 pass verification, the plaintext Vote and encrypted
VoterID will be posted honestly on the WBB in Step 9 of Tally.

We have argued that VoterIDs in sets δ2 and δ3 will not pass verification (and will
therefore be excluded from the tally). VoterIDs in sets δ1 and δ4 will result in exactly
one matching VoterID at Step 21 of Tally by EC honesty. For VoterIDs in set δ4, the
PETs at Steps 23 and 25 of Tally guarantee that the MAC and vote received by the EC

14Here we mean the Paper1 that was verified and submitted by the honest voter, though of course
corrupt voters may also have submitted fraudulent commitment openings.

69

match what the voter checked manually. Thus, each honest verifying voter’s vote must
have been included correctly in the tally except with probability

δ1η1 = negl(λ)

Since at least θ = |V| − (M − δ) honest voters successfully verified their vote, this is
also an upper bound on the adversary’s probability of altering the election outcome and
thus winning the game.

5.4 Possible extensions to the protocol

The protocol provides a number of possible extensions and variants, depending on the
desired trust model and functionality. We summarise a few below.

Hiding which voters’ MACs matched. The protocol as written reveals the set of
VoterIDs that successfully passed the MAC matching process. This produces public
information about who cast a valid vote and who didn’t. It would be easy to alter the
protocol to hide this information by e.g. adding an additional shuffle after matching
encrypted Votes to their encrypted ReceivedVotes. One could imagine this would be a
desirable property in some active coercion scenarios where a voter has been pressured
into casting an informal vote. This would subtly change the verifiability property: in-
dividual voters would not know whether or not their votes were verified, but the group
of voters would know how many votes passed verification and how many failed.

Hiding which vote was cast from the client. The protocol as written relies on the
client for receipt-freeness. Although a client controlled by the voter can lie to a coercer,
a client controlled by the coercer knows which MAC was submitted and therefore which
vote was sent, leaving the voter with no hope of hiding this information. One could
imagine a version of the protocol in which the client helps the voter generate votes,
but does not know which vote was actually cast. This would have a valuable property
distinct from those we prove above: a malicious client would not know which vote had
been cast. In particular, the MAC generation, vote encryption, and messages sent to the
EC in Cast (Algorithm 15) need not be performed by the same device. A voter could
generate several different ciphertexts on their desktop computer, and use their mobile
phone to upload the results to the EC. This has significant privacy advantages against
a malicious client, but presents more opportunity for a voter to unintentionally deviate
from the protocol. For example, a voter could entirely forget to upload their encrypted
MAC and vote to the EC, or could remember to do this upload but forget to check that

70

the EC posted re-randomised versions to the WBB. We therefore leave this possibility
as an extension.

Distributed generation of randomness Since the voter’s ability to detect a cheating
EC relies on the client keeping the values a and b secret, the protocol would benefit if a
and b were generated in a distributed manner. For example, a voter’s desktop computer
and mobile phone could each generate part of the secrets, and work together to construct
the relevant ciphertexts using a secret sharing scheme. However, similarly to hiding the
vote from the client, this would significantly complicate the user experience. A smooth
approach to achieving this property would be a useful avenue for future work.

71

6 Implementation

We implemented a prototype of our protocol in the Rust programming language [49],
owing to its high efficiency and memory safety guarantees. The prototype is split into
several parts:

• the Cryptid library containing implementations of a k-out-of-n threshold variant
of the ElGamal cryptosystem, and associated zero-knowledge proofs (available
at https://github.com/eleanor-em/cryptid)

• the voting system itself (available at https://github.com/eleanor-em/
papervote), containing:

– the wbb package, containing PostgreSQL management utilities and a web
server interface to act as the WBB

– the trustee package, containing a peer-to-peer client application to act
as the electoral trustees, or alternatively to post a received vote to the WBB
during execution

– the voter package, containing the voting client (designed to be usable by
a non-expert)

– the verify package, containing the necessary utilities to execute both
VoterVerify (Algorithm 17) and GlobalVerify (Algorithm 18)

The source code and documentation for the prototype implementation is publicly avail-
able here: https://github.com/eleanor-em/papervote/

6.1 Cryptographic details

The ElGamal implementation in Cryptid uses an existing implementation of the Ristretto
elliptic curve group over Curve25519 [50], curve25519-dalek [51]. This was chosen
due to its high performance and strong guarantees for constant-time operations. To
convert ElGamal into a k-out-of-n threshold system, we used Pedersen secret shar-
ing [31], allowing the key shares to be constructed without a trusted dealer. Note this
protocol allows termination attacks, where a party manipulates the result by terminating
early if the randomness does not follow the pattern they would prefer; we assume this
is not allowed, since abnormal termination of a trustee indicates a verifiability concern.
The plaintext equivalence proof use the Jakobsson-Juels PET [40], with the correction
from [36] to achieve universal verifiability.

72

https://github.com/eleanor-em/cryptid
https://github.com/eleanor-em/papervote
https://github.com/eleanor-em/papervote
https://github.com/eleanor-em/papervote/

To serialise each ciphertext, proof, etc. the group elements and/or integer powers
required were represented in base-64, and transmitted in a natural JSON format. While
this is not the most compressed form possible, it made development and testing easier.
The drawbacks of this choice are made clearer in the following section, and additionally
when transmitting multiple proofs, duplicated information is recorded. A real-world
deployment should use a more efficient representation.

6.2 Constructing the physical ballots

Ciphertexts and cryptographic proofs can take up a large amount of space. Encoding
these in a machine-readable form is not a trivial task. Due to their ubiquity, we encoded
the data in the form of QR codes.

Recall that Paper 1 contains a plaintext vote, encrypted secrets a, b, ra, rb, and proofs
of plaintext knowledge for these secrets. We separated the secrets into pairs a, b and
ra, rb, producing separate QR codes for each encrypted pair, and similarly for the proofs.
In our prototype system, the VoterID is a random string of 10 bytes encoded in base-
64; note that in a production system this would need to be verifiably unique. The result
is reproduced as Figure 3 below. Similarly, Paper 2 contains a VoterID , its encryption,
and a proof of correct encryption (the latter two contained in a single QR code). The
result is reproduced as Figure 4.

The voting client generated a PDF document containing the QR codes and plaintext
data for each of Paper 1 and Paper 2, and the user was directed to print each piece of
paper to form their physical ballot.

In an earlier version of the prototype, the encryptions and proofs were encoded
as one large QR code; however, it was discovered that larger QR codes were unreliable
when scanning. A real-world deployment would require careful testing to make sure QR
codes can be successfully scanned in a variety of conditions. The encryptions and proofs
were encoded in base-64, with different group elements and integer powers delimited
by the symbols : and -. As discussed above, more efficient encodings are possible;
however, this did not noticeably impact functionality in our pilot testing. An example
of the raw data encoded in the QR codes appears in Figure 5.

6.3 Benchmarks

Practicality was a key focus in the implementation process, as many existing voting pro-
tocols such as JCJ [16] require O(n2) complexity to tally n votes. Bearing in mind that
a real-world use of the protocol may need to count millions of votes, we ran benchmarks

73

Paper 1 -- Vote: 	Alice: 2 	Bob: 3 	Eve: 1

Encryptions:

Proofs:

Figure 3: Paper 1: The top two QR codes contain encryptions of a, b and ra, rb respec-
tively. The QR codes below contain proofs of plaintext knowledge.

Paper 2 -- VoterID: 3f504fd3ff

Figure 4: Paper 2: The QR code here contains an encryption of the VoterID on the
paper, as well as a proof of encryption.

74

QKU6MknZMQmG/FqH/9a+ATNoqsLB9pzVBhH/kUiIVz0=:xma2+tThWCPkFTROOCmksG8sIKA2zhN/59Ij5Y8OjzI=
-xOwPjXhatRSV0IjbWNxS7lfsJxVFji1kGDKAj5rD4A0=
8oz3NyXNIB5aNsw/xYotQJQX0Z3oHnMseft/leng9Tk=:fLYrY2MF7cfTD6mQaOWbmhVX3nMtYOsZIB6PdlN+G2A=
-wJPk2/BnqF1vZccEmD3zXRWlzJjiPZ5YJ56PWLXBk24=:MGh1hNVjRZisPKMPtzcIVJUL9SoWl7S4X07MooSU8mw=
/MvJE05PV5zV0HueCHAogvrso40jii6UALTorCrn+GQ=:BJOSw5yRmTT6DlHOy0FNt4KUum64i4rhKoyQAduwnE0=
-rsddOzCGheFpTn51+Qu8vCENvk6aN+zCYMQjU5WRkhw=:KmE4z66IwiEsefzcGM0Vj7JCQpAykhyNSdkzKQKoBEI=
4vKuCmq8TnGohKlhxQBRX1jjC2qlgt2NtqZZReCNLXY=-8oz3NyXNIB5aNsw/xYotQJQX0Z3oHnMseft/leng9Tk=:
fLYrY2MF7cfTD6mQaOWbmhVX3nMtYOsZIB6PdlN+G2A=-YIvP27EA0rJBulVllYKbv52howw0XCrnaF5WzWjYrSo=
-pPNgXRxlV0cXl3YVWj3ZYSvo3BVmtxKJr7bbRqQB4QM=_4vKuCmq8TnGohKlhxQBRX1jjC2qlgt2NtqZZReCNLXY=
-wJPk2/BnqF1vZccEmD3zXRWlzJjiPZ5YJ56PWLXBk24=:MGh1hNVjRZisPKMPtzcIVJUL9SoWl7S4X07MooSU8mw=
-XleTY8eL6FzTrT5KHkgIMMUs6ZM74TneJIUv/6oytQM=-882097wkpA6H45H0LqfqHrLIcmbUdpask0Cr1bwCcwA=
4vKuCmq8TnGohKlhxQBRX1jjC2qlgt2NtqZZReCNLXY=-/MvJE05PV5zV0HueCHAogvrso40jii6UALTorCrn+GQ=:
BJOSw5yRmTT6DlHOy0FNt4KUum64i4rhKoyQAduwnE0=-cOc5/GqnHzdJJVR3hqcsNcQ7lXC21d8pcB4oo0hvtyA=
-VLazjpIPMuSWzF0hb3r1TWRi03Md+f2MimAkpYTKHQM=_4vKuCmq8TnGohKlhxQBRX1jjC2qlgt2NtqZZReCNLXY=
-rsddOzCGheFpTn51+Qu8vCENvk6aN+zCYMQjU5WRkhw=:KmE4z66IwiEsefzcGM0Vj7JCQpAykhyNSdkzKQKoBEI=
-ggyFWLx0Gv2YKbeVfwH7I12IlVl6Zc/ZEYh5yw1Uc0E=-5hto9LRlL1EwqLPfzLPFW2U85du/7cGv6d+x4A6YWQM=

Figure 5: An example of the raw data encoded in the QR codes for Paper 1 (line breaks
inserted for readability). Upon close inspection, it is clear this could be compressed
further.

for each of the major operations of Tally (Algorithm 16) using an Intel i7-10750H CPU.
We used 2-out-of-3 secret sharing with other parameters randomised.

The below results include latency in socket communication on a local system but do
not include latency across a network due to limitations in available hardware. Bench-
marks were run using sets of automatically-generated votes, received using the raw
data instead of the physical paper. We tested the following operations from Tally (Al-
gorithm 16):

• the first shuffle (Step 10)

• the first decryption (Step 12)

• the PET operations (Steps 23 and 25)

• the final shuffle (Step 28)

• the final decryption (Step 31)

• additionally, the time to finish the tally (that is, download the decrypted votes
from the WBB)

Creating and submitting a single ballot took an average of 1.2 seconds. The results
are summarised in Figure 6. We see that the prototype achieves roughly linear com-
plexity in practice, with some variance at lower numbers of votes (likely due to the
communication overhead between trustees). The vast majority of processing time was
spent in the plaintext equivalence test; this makes sense as it is quite a complex protocol
(see Algorithm 12). The cost of PETs is a known issue in the literature, with older pro-
tocols requiring O(n2) PET procedures and thus being known to be impractical [16].

75

Vote count First shuffle First dec. PET Final shuffle Final dec. Tallying
500 2.33 s 1.95 s 11.2 s 1.5 s 0.94 s 0.66 s
1000 6.21 s 4.76 s 31.5 s 4.35 s 2.38 s 1.88 s
5000 20.9 s 17.6 s 117 s 16.9 s 9.92 s 7.40 s

Figure 6: Benchmark results for each major step of Tally on varying numbers of votes.

We also tested the implementation of the verifiable shuffle, since this is also a com-
plex protocol that can be expensive (see Section 3.7). With 100000 rows of 6 cipher-
texts, the proof was generated in 38.3 seconds and verified in 26.4 seconds (without
network latency). This suggests that the protocol would successfully scale to the or-
der of millions of votes given more powerful hardware and a suitably-fast local area
network, completing in the order of minutes to at most hours.

6.4 Real-world pilot

We ran a real-world pilot of the protocol with human voters, using three trustees and
the WBB running on the same server for simplicity. A small number of volunteers were
asked to rank candidates Alice, Bob, and Eve; the example votes from Section 4.3 were
taken from this pilot. Seven preferential votes (ranking candidates 1, 2, and 3 where 1
is the highest preference) were submitted and physically mailed to the author, acting as
the EC. Five of these ballots were successfully scanned, with the other two being lost
due to errors in the receiving process such as accidentally destroying pieces of paper.
This provided a nice opportunity to test the verification procedures: five voters used
the verification program, and one of those voters discovered that their vote had been
excluded from the count.

While this is not close to a full usability study or test in a realistic setting, the small-
scale pilot demonstrates that voters can successfully use the system, that the system is
complete and functional, and that simple problems can be detected by voters. 15

15For avoidance of doubt, Eve won in a landslide.

76

7 Future work & conclusion

We have presented a novel cryptographic protocol for verifiable remote voting. In this
section we discuss future work stemming from the development of the protocol, and
provide some concluding remarks.

7.1 Future work

The protocol we present emphasises verifiability but does not attempt to provide ac-
countability, nor any defence against denial-of-service and other malicious attempts to
construct problems when there were none. For example, one could generate and phys-
ically post fake ballots with someone else’s VoterID . This will not successfully forge
a vote, but will flag the VoterID as having encountered a problem. While this does not
defeat verifiability, it would (detectably) cause votes to be discounted and would give
an indication of attempted fraud. A practical defence here is to make VoterIDs hard to
guess, although this needs to be done with some care to avoid clash attacks (whereby
two voters are persuaded that they have the same VoterID).

A key assumption the protocol makes is that the client and EC are not both compro-
mised. In an ideal world, people would download, compute a checksum, and compile
an open-source voting app from an independent source they trusted. In practice, voters
generally get instructions and software from the same authority that will be receiving
their votes. This is an important practical issue for true security of our scheme. How-
ever, as previously discussed most existing verifiable voting systems (particularly those
based on code voting) fall victim to the same problem.

Several possible extensions discussed in Section 5.4 provide tangible benefits to the
security and privacy of the protocol, but at a significant cost in terms of user experience.
A useful avenue of work would be to find better compromises, allowing access to the
strongest possible security and privacy guarantees in an accessible and error-resistant
manner.

Before deploying the voting system in a real-world context, more extensive user
testing would be needed. Formal research analysing the understanding and ability of
many different potential voters to use the system should be performed, as well as a
professional security audit on the codebase itself. A graphical user interface (rather than
a command-line interface) would go a long way to achieving real-world practicality.
Further, it is unclear how many voters have access to a printer—this would be a valuable
insight to have. For voters who do not have a printer, it would be useful to study whether
these voters would be comfortable using e.g. a public library printer to create their

77

ballots, and to consider whether this is a realistic security and/or privacy risk.
Finally, the protocol only achieves passive receipt freeness. While this is much

stronger than the properties achieved in similar existing work, this is a significant limi-
tation that would benefit from further research.

7.2 Conclusion

We have developed a significant step forward in the design of verifiable remote voting
protocols. Focusing on easy cast-as-intended verifiability with the voter visually in-
specting a paper ballot and scrutineers ensuring the correctness of constructed ballots,
we augment existing postal voting procedures with passive receipt-freeness (assuming
access to an untappable channel) and a strong form of verifiability.

While our protocol does not provide universal verifiability, we require only that we
assume either the voter’s device or the postal service and electoral commission are
honest—or at least, are not actively colluding. This is a reasonable trade-off in practice,
and our work is the first that can provide all of these strengths simultaneously.

We reviewed the theoretical background underpinning cryptographic voting proto-
cols, and using a minor variant of existing definitions formally proved verifiability and
privacy properties of our protocol. We developed a functioning prototype implemen-
tation for the protocol, and tested it both under large-scale simulated loads and at a
smaller scale in real-world conditions, demonstrating the protocol’s viability.

Verifiable remote voting is far from a solved problem, and is considered by many
to be one of the hardest open problems in applied cryptography. We have provided but
another step towards this goal, and we hope that the area continues to mature well into
the future.

78

8 References

[1] NSW Electoral Commission and others. iVote system security implementation
statement, March 2015.

[2] Scytl. Scytl sVote – Complete Verifiability Security Proof Report, 2018.

[3] David Spicer. Evaluation of services at the 24 november 2018 victorian state elec-
tion. Colmar Brunton, 2018. [Online; accessed 25-Nov-2020]https://web.
archive.org/web/20201125081828/https://www.vec.vic.

gov.au/-/media/f8c73a8e28604cc0b5fccb56493ca917.ashx.

[4] Colin Rallings and Michael Thrasher. The 2010 General Election: aspects of
participation and administration. LGC Elections Centre report, 2010.

[5] Kristian Gjøsteen. The norwegian internet voting protocol. In International Con-

ference on E-Voting and Identity, pages 1–18. Springer, 2011.

[6] Josh D Cohen and Michael J Fischer. A robust and verifiable cryptographically

secure election scheme. Yale University. Department of Computer Science, 1985.

[7] Josh Benaloh. Verifiable secret-ballot elections, September 1987.

[8] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In Pro-

ceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 544–553, 1994.

[9] Josh Benaloh, Peter YA Ryan, and Vanessa Teague. Verifiable postal voting. In
Cambridge International Workshop on Security Protocols, pages 54–65. Springer,
2013.

[10] Ben Adida. Helios: Web-based open-audit voting. In USENIX security sympo-

sium, volume 17, pages 335–348, 2008.

[11] Josh Benaloh. Simple verifiable elections. EVT, 6:5–5, 2006.

[12] Josh Benaloh, Ronald L. Rivest, Peter Y. A. Ryan, Philip B. Stark, Vanessa
Teague, and Poorvi L. Vora. End-to-end verifiability. CoRR, abs/1504.03778,
2015.

[13] Fatih Karayumak, Maina M Olembo, Michaela Kauer, and Melanie Volkamer. Us-
ability analysis of helios-an open source verifiable remote electronic voting sys-
tem. EVT/WOTE, 11(5), 2011.

79

https://web.archive.org/web/20201125081828/https://www.vec.vic.gov.au/-/media/f8c73a8e28604cc0b5fccb56493ca917.ashx
https://web.archive.org/web/20201125081828/https://www.vec.vic.gov.au/-/media/f8c73a8e28604cc0b5fccb56493ca917.ashx
https://web.archive.org/web/20201125081828/https://www.vec.vic.gov.au/-/media/f8c73a8e28604cc0b5fccb56493ca917.ashx

[14] Peri K Blind. Building trust in government in the twenty-first century: Review
of literature and emerging issues. In 7th Global Forum on Reinventing Govern-

ment Building Trust in Government, volume 2007, pages 26–29. UNDESA Vi-
enna, 2007.

[15] Simon Horsburgh, Shaun Goldfinch, and Robin Gauld. Is public trust in govern-
ment associated with trust in e-government? Social Science Computer Review,
29(2):232–241, 2011.

[16] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Towards Trustworthy Elections, pages 37–63. Springer, 2010.

[17] Michael R Clarkson, Stephen Chong, and Andrew C Myers. Civitas: Toward
a secure voting system. In 2008 IEEE Symposium on Security and Privacy (sp

2008), pages 354–368. IEEE, 2008.

[18] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas
Zacharias. On the security properties of e-voting bulletin boards. In International

Conference on Security and Cryptography for Networks, pages 505–523. Springer,
2018.

[19] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir, Benedikt
Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-checked proofs of
privacy for electronic voting protocols. In 2017 IEEE Symposium on Security and

Privacy (SP), pages 993–1008. IEEE, 2017.

[20] Filip Zagórski, Richard T Carback, David Chaum, Jeremy Clark, Aleksander Es-
sex, and Poorvi L Vora. Remotegrity: Design and use of an end-to-end verifiable
remote voting system. In International Conference on Applied Cryptography and

Network Security, pages 441–457. Springer, 2013.

[21] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. Beleniosvs: Secrecy
and verifiability against a corrupted voting device. In 2019 IEEE 32nd Computer

Security Foundations Symposium (CSF), pages 367–36714. IEEE, 2019.

[22] Peter YA Ryan and Vanessa Teague. Pretty good democracy. In International

Workshop on Security Protocols, pages 111–130. Springer, 2009.

[23] Riza Aditya, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Secure e-voting
for preferential elections. In International Conference on Electronic Government,
pages 246–249. Springer, 2003.

80

[24] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-
niuc, Ronald L Rivest, Peter YA Ryan, Emily Shen, and Alan T Sherman. Scant-
egrity ii: End-to-end verifiability for optical scan election systems using invisible
ink confirmation codes. EVT, 8:1–13, 2008.

[25] Susan Bell, Josh Benaloh, Michael D Byrne, Dana DeBeauvoir, Bryce Eakin,
Philip Kortum, Neal McBurnett, Olivier Pereira, Philip B Stark, Dan S Wallach,
et al. Star-vote: A secure, transparent, auditable, and reliable voting system. In
2013 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections

(EVT/WOTE 13), 2013.

[26] Tom Burt. Protecting democratic elections through secure, verifiable vot-
ing. https://web.archive.org/web/20201125024437/https:

//blogs.microsoft.com/on-the-issues/2019/05/06/

protecting-democratic-elections-through-secure-verifiable-voting/.
Online; accessed 25-November-2020.

[27] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chap-
man and Hall/CRC, 2014.

[28] Keith Conrad. Cyclicity of (Z/p)×. https://web.archive.org/web/

20201107172814/https://kconrad.math.uconn.edu/blurbs/

grouptheory/cyclicmodp.pdf. Online; accessed 25-November-2020.

[29] Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic al-
gorithms and key lengths. Technical report, National Institute of Standards and
Technology, 2018.

[30] Mohsen Bafandehkar, Sharifah Md Yasin, Ramlan Mahmod, and Zurina Mohd
Hanapi. Comparison of ecc and rsa algorithm in resource constrained devices. In
2013 International Conference on IT Convergence and Security (ICITCS), pages
1–3. IEEE, 2013.

[31] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In
Workshop on the Theory and Application of of Cryptographic Techniques, pages
522–526. Springer, 1991.

[32] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

81

https://web.archive.org/web/20201125024437/https://blogs.microsoft.com/on-the-issues/2019/05/06/protecting-democratic-elections-through-secure-verifiable-voting/
https://web.archive.org/web/20201125024437/https://blogs.microsoft.com/on-the-issues/2019/05/06/protecting-democratic-elections-through-secure-verifiable-voting/
https://web.archive.org/web/20201125024437/https://blogs.microsoft.com/on-the-issues/2019/05/06/protecting-democratic-elections-through-secure-verifiable-voting/
https://web.archive.org/web/20201107172814/https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf
https://web.archive.org/web/20201107172814/https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf
https://web.archive.org/web/20201107172814/https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf

[33] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129–
140. Springer, 1991.

[34] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft

0.5, 2020.

[35] Ronald Cramer. Modular design of secure yet practical cryptographic protocols.
Ph. D. Thesis, CWI and University of Amsterdam, 1996.

[36] Eleanor McMurtry, Olivier Pereira, and Vanessa Teague. When is a test not
a proof? In 25th European Symposium on Research in Computer Secu-

rity,(ESORICS 2020), 2020.

[37] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of

cryptology, 4(3):161–174, 1991.

[38] Rolf Haenni, Philipp Locher, Reto Koenig, and Eric Dubuis. Pseudo-code al-
gorithms for verifiable re-encryption mix-nets. In International Conference on

Financial Cryptography and Data Security, pages 370–384. Springer, 2017.

[39] Ueli Maurer. Unifying zero-knowledge proofs of knowledge. In International

Conference on Cryptology in Africa, pages 272–286. Springer, 2009.

[40] Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation
via ciphertexts. In International Conference on the Theory and Application of

Cryptology and Information Security, pages 162–177. Springer, 2000.

[41] Douglas Wikström. How to implement a stand-alone verifier for the verificatum
mix-net (version 3.0.4). 2018.

[42] Chris Culnane and Steve Schneider. A peered bulletin board for robust use in
verifiable voting systems. In Computer Security Foundations Symposium (CSF),

2014 IEEE 27th, pages 169–183. IEEE, 2014.

[43] Lucca Hirschi, Lara Schmid, and David A Basin. Fixing the achilles heel of e-
voting: The bulletin board. IACR Cryptol. ePrint Arch., 2020:109, 2020.

[44] Ralf Kusters, Tomasz Truderung, and Andreas Vogt. Clash attacks on the verifi-
ability of e-voting systems. In 2012 IEEE Symposium on Security and Privacy,
pages 395–409. IEEE, 2012.

82

[45] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with ever-
lasting privacy. In Annual International Cryptology Conference, pages 373–392.
Springer, 2006.

[46] Charles Stewart III. Losing votes by mail. NYUJ Legis. & Pub. Pol’y, 13:573,
2010.

[47] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 468–498. Springer, 2015.

[48] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomor-
phic encryption. In International Conference on the Theory and Applications of

Cryptographic Techniques, pages 539–556. Springer, 2000.

[49] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers Rust

2018). No Starch Press, 2019.

[50] Mike Hamburg. Decaf: Eliminating cofactors through point compression. In
Annual Cryptology Conference, pages 705–723. Springer, 2015.

[51] Isis Agora Lovecruft and Henry De Valence. curve25519 dalek. https://

doc.dalek.rs/curve25519_dalek/.

83

https://doc.dalek.rs/curve25519_dalek/
https://doc.dalek.rs/curve25519_dalek/

	Introduction
	Contributions
	Background
	Organisation

	Literature review
	Cryptographic tools
	Mathematical conventions
	The ElGamal cryptosystem
	Security of ElGamal
	Choosing an appropriate group
	Elliptic curve groups
	Sharing an ElGamal key between trustees
	The homomorphic property of ElGamal
	Re-randomisation of ciphertexts

	Pedersen commitments
	Zero-knowledge proofs
	Non-interactivity and the Fiat-Shamir transformation

	Preimage proofs
	Applications of preimage proofs for discrete logarithms
	Wikström's shuffle proof
	Preimage proof of shuffle

	The protocol
	Overview
	Setup
	Casting a ballot
	Tallying ballots
	The algorithms
	Verification procedure
	Interpreting the outcome

	Properties of the protocol
	Privacy
	Receipt-freeness
	Verifiability
	With a cheating EC
	With a cheating client

	Possible extensions to the protocol

	Implementation
	Cryptographic details
	Constructing the physical ballots
	Benchmarks
	Real-world pilot

	Future work & conclusion
	Future work
	Conclusion

	References

